Finding Details - ACT Reading
Card 0 of 480
According to the passage, which of the following species best matches its flagship process and why?
This passage is adapted from “Flagship Species and Their Role in the Conservation Movement” (2020)
Until recently, two schools of thought have dominated the field of establishing “flagship” endangered species for marketing and awareness campaigns. These flagship species make up the subset of endangered species conservation experts utilize to elicit public support - both financial and legal - for fauna conservation as a whole.
The first concerns how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species, commonly termed its “public awareness.” This school of thought was built on the foundation that if an individual recognizes a species from prior knowledge, cultural context, or previous conservational and educational encounters (in a zoo environment or classroom setting, for instance) that individual would be more likely to note and respond to the severity of its endangered status. However, recently emerging flagship species such as the pangolin have challenged the singularity of this factor.
Alongside public awareness, conservation experts have long considered a factor they refer to as a “keystone species” designation in the flagstone selection process. Keystone species are those species that play an especially vital role in their respective habitats or ecosystems. While this metric is invaluable to the environmentalists in charge of designating funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.
Recent scholarship has questioned both the singularity and the extent to which the above classifications impact the decision making of the general public. Though more complicated to measure, a third designation, known as a species’ “charisma,” is now the yardstick by which most flagship species are formally classified. Addressing the charisma of a species involves establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics. This process has been understandably criticized by some for its costs and failure to incorporate the severity of an endangered species’ status into designation, but its impact on the public has been irrefutable. While keystone and public awareness designations are still often applied in the field because of their practicality and comparative simplicity, charisma is now commonly accepted as the most accurate metric with which to judge a species’ flagship potential.
According to the passage, which of the following species best matches its flagship process and why?
This passage is adapted from “Flagship Species and Their Role in the Conservation Movement” (2020)
Until recently, two schools of thought have dominated the field of establishing “flagship” endangered species for marketing and awareness campaigns. These flagship species make up the subset of endangered species conservation experts utilize to elicit public support - both financial and legal - for fauna conservation as a whole.
The first concerns how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species, commonly termed its “public awareness.” This school of thought was built on the foundation that if an individual recognizes a species from prior knowledge, cultural context, or previous conservational and educational encounters (in a zoo environment or classroom setting, for instance) that individual would be more likely to note and respond to the severity of its endangered status. However, recently emerging flagship species such as the pangolin have challenged the singularity of this factor.
Alongside public awareness, conservation experts have long considered a factor they refer to as a “keystone species” designation in the flagstone selection process. Keystone species are those species that play an especially vital role in their respective habitats or ecosystems. While this metric is invaluable to the environmentalists in charge of designating funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.
Recent scholarship has questioned both the singularity and the extent to which the above classifications impact the decision making of the general public. Though more complicated to measure, a third designation, known as a species’ “charisma,” is now the yardstick by which most flagship species are formally classified. Addressing the charisma of a species involves establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics. This process has been understandably criticized by some for its costs and failure to incorporate the severity of an endangered species’ status into designation, but its impact on the public has been irrefutable. While keystone and public awareness designations are still often applied in the field because of their practicality and comparative simplicity, charisma is now commonly accepted as the most accurate metric with which to judge a species’ flagship potential.
In this case, we need to match the designation to its explanation. From the context of the passage, we know that the designations are as follows:
Public awareness - “how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species.”
Keystone species - “those species that play an especially important role in their respective habitats or ecosystems.”
Charismatic species - “establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics.”
Given this context, the only designation that matches with its explanation is: “The prairie dog is an example of a keystone species because it churns the ground as it burrows, making the soil more arable for plant life and the overall ecosystem.”
In this case, we need to match the designation to its explanation. From the context of the passage, we know that the designations are as follows:
Public awareness - “how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species.”
Keystone species - “those species that play an especially important role in their respective habitats or ecosystems.”
Charismatic species - “establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics.”
Given this context, the only designation that matches with its explanation is: “The prairie dog is an example of a keystone species because it churns the ground as it burrows, making the soil more arable for plant life and the overall ecosystem.”
Compare your answer with the correct one above
Which of the following is cited in the passage as an important use of the keystone species designation?
This passage is adapted from “Flagship Species and Their Role in the Conservation Movement” (2020)
Until recently, two schools of thought have dominated the field of establishing “flagship” endangered species for marketing and awareness campaigns. These flagship species make up the subset of endangered species conservation experts utilize to elicit public support - both financial and legal - for fauna conservation as a whole.
The first concerns how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species, commonly termed its “public awareness.” This school of thought was built on the foundation that if an individual recognizes a species from prior knowledge, cultural context, or previous conservational and educational encounters (in a zoo environment or classroom setting, for instance) that individual would be more likely to note and respond to the severity of its endangered status. However, recently emerging flagship species such as the pangolin have challenged the singularity of this factor.
Alongside public awareness, conservation experts have long considered a factor they refer to as a “keystone species” designation in the flagstone selection process. Keystone species are those species that play an especially vital role in their respective habitats or ecosystems. While this metric is invaluable to the environmentalists in charge of designating funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.
Recent scholarship has questioned both the singularity and the extent to which the above classifications impact the decision making of the general public. Though more complicated to measure, a third designation, known as a species’ “charisma,” is now the yardstick by which most flagship species are formally classified. Addressing the charisma of a species involves establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics. This process has been understandably criticized by some for its costs and failure to incorporate the severity of an endangered species’ status into designation, but its impact on the public has been irrefutable. While keystone and public awareness designations are still often applied in the field because of their practicality and comparative simplicity, charisma is now commonly accepted as the most accurate metric with which to judge a species’ flagship potential.
Which of the following is cited in the passage as an important use of the keystone species designation?
This passage is adapted from “Flagship Species and Their Role in the Conservation Movement” (2020)
Until recently, two schools of thought have dominated the field of establishing “flagship” endangered species for marketing and awareness campaigns. These flagship species make up the subset of endangered species conservation experts utilize to elicit public support - both financial and legal - for fauna conservation as a whole.
The first concerns how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species, commonly termed its “public awareness.” This school of thought was built on the foundation that if an individual recognizes a species from prior knowledge, cultural context, or previous conservational and educational encounters (in a zoo environment or classroom setting, for instance) that individual would be more likely to note and respond to the severity of its endangered status. However, recently emerging flagship species such as the pangolin have challenged the singularity of this factor.
Alongside public awareness, conservation experts have long considered a factor they refer to as a “keystone species” designation in the flagstone selection process. Keystone species are those species that play an especially vital role in their respective habitats or ecosystems. While this metric is invaluable to the environmentalists in charge of designating funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.
Recent scholarship has questioned both the singularity and the extent to which the above classifications impact the decision making of the general public. Though more complicated to measure, a third designation, known as a species’ “charisma,” is now the yardstick by which most flagship species are formally classified. Addressing the charisma of a species involves establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics. This process has been understandably criticized by some for its costs and failure to incorporate the severity of an endangered species’ status into designation, but its impact on the public has been irrefutable. While keystone and public awareness designations are still often applied in the field because of their practicality and comparative simplicity, charisma is now commonly accepted as the most accurate metric with which to judge a species’ flagship potential.
In the passage, the author cites that “While this \[keystone designation\] metric is important to the environmentalists in charge of distributing funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.” So the keystone designation is important because it helps environmentalists understand how to best allocate funding when attempting to help protect endangered species by understanding which species are most vital to their ecosystems. The designation doesn’t help identify endangered species… we’re looking at identifying flagship species among a pool of species that are all endangered! The keystone designation is also not a part of the charisma measurement, and there is no mention in the passage that the designation informs what types of marketing organizations use.
In the passage, the author cites that “While this \[keystone designation\] metric is important to the environmentalists in charge of distributing funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.” So the keystone designation is important because it helps environmentalists understand how to best allocate funding when attempting to help protect endangered species by understanding which species are most vital to their ecosystems. The designation doesn’t help identify endangered species… we’re looking at identifying flagship species among a pool of species that are all endangered! The keystone designation is also not a part of the charisma measurement, and there is no mention in the passage that the designation informs what types of marketing organizations use.
Compare your answer with the correct one above
The passage states that Sir Thomas's sons reacted to Fanny with
This passage is adapted from Jane Austen, Mansfield Park. Originally published 1814. Fanny has recently moved to live with her relatives at Mansfield Park.
The little girl performed her long journey in safety; and at Northampton was met by Mrs. Norris, who thus regaled in the credit of being foremost to welcome her, and in the importance of leading her into the others, and recommending her to their kindness.
Fanny Price was at this time just ten years old, and though there might not be much in her first appearance to captivate, there was, at least, nothing to disgust her relations. She was small of her age, with no glow of complexion, nor any other striking beauty; exceedingly timid and shy, and shrinking from notice; but her air, though awkward, was not vulgar, her voice was sweet, and when she spoke her countenance was pretty. Sir Thomas and Lady Bertram received her very kindly; and Sir Thomas, seeing how much she needed encouragement, tried to be all that was conciliating: but he had to work against a most untoward gravity of deportment; and Lady Bertram, without taking half so much trouble, or speaking one word where he spoke ten, by the mere aid of a good-humored smile, became immediately the less awful character of the two.
The young people were all at home, and sustained their share in the introduction very well, with much good humor, and no embarrassment, at least on the part of the sons, who, at seventeen and sixteen, and tall of their age, had all the grandeur of men in the eyes of their little cousin. The two girls were more at a loss from being younger and in greater awe of their father, who addressed them on the occasion with rather an injudicious particularity. But they were too much used to company and praise to have anything like natural shyness; and their confidence increasing from their cousin's total want of it, they were soon able to take a full survey of her face and her frock in easy indifference.
They were a remarkably fine family, the sons very well-looking, the daughters decidedly handsome, and all of them well-grown and forward of their age, which produced as striking a difference between the cousins in person, as education had given to their address; and no one would have supposed the girls so nearly of an age as they really were. There were in fact but two years between the youngest and Fanny. Julia Bertram was only twelve, and Maria but a year older.
The little visitor meanwhile was as unhappy as possible. Afraid of everybody, ashamed of herself, and longing for the home she had left, she knew not how to look up, and could scarcely speak to be heard, or without crying. Mrs. Norris had been talking to her the whole way from Northampton of Fanny’s wonderful good fortune, and the extraordinary degree of gratitude and good behavior which it ought to produce, and her consciousness of misery was therefore increased by the idea of its being a wicked thing for her not to be happy.
The fatigue, too, of so long a journey, became soon no trifling evil. In vain were the well-meant condescensions of Sir Thomas, and all the officious prognostications of Mrs. Norris that she would be a good girl; in vain did Lady Bertram smile and make her sit on the sofa with herself and pug, and vain was even the sight of a gooseberry tart towards giving her comfort; she could scarcely swallow two mouthfuls before tears interrupted her, and sleep seeming to be her likeliest friend, she was taken to finish her sorrows in bed.
“This is not a very promising beginning,” said Mrs. Norris, when Fanny had left the room. “After all that I said to her as we came along, I thought she would have behaved better; I told her how much might depend upon her acquitting herself well at first. I wish there may not be a little sulkiness of temper—her poor mother had a good deal; but we must make allowances for such a child—and I do not know that her being sorry to leave her home is really against her, for, with all its faults, it was her home, and she cannot as yet understand how much she has changed for the better; but then there is moderation in all things.”
It required a longer time, however, than Mrs. Norris was inclined to allow to reconcile Fanny to the novelty of Mansfield Park, and the separation from everybody she had been used to. Her feelings were very acute and too little understood to be properly attended to. Nobody meant to be unkind, but nobody put themselves out of their way to secure her comfort.
Fanny, whether near or from her cousins, whether in the schoolroom, the drawing-room, or the shrubbery, was equally forlorn, finding something to fear in every person and place. She was disheartened by Lady Bertram's silence, awed by Sir Thomas's grave looks, and quite overcome by Mrs. Norris's admonitions. Her elder cousins mortified her by reflections on her size, and abashed her by noticing her shyness: Miss Lee wondered at her ignorance, and the maid-servants sneered at her clothes; and when to these sorrows was added the idea of the brothers and sisters among whom she had always been important as playfellow, instructress, and nurse, the despondence that sunk her little heart was severe.
The passage states that Sir Thomas's sons reacted to Fanny with
This passage is adapted from Jane Austen, Mansfield Park. Originally published 1814. Fanny has recently moved to live with her relatives at Mansfield Park.
The little girl performed her long journey in safety; and at Northampton was met by Mrs. Norris, who thus regaled in the credit of being foremost to welcome her, and in the importance of leading her into the others, and recommending her to their kindness.
Fanny Price was at this time just ten years old, and though there might not be much in her first appearance to captivate, there was, at least, nothing to disgust her relations. She was small of her age, with no glow of complexion, nor any other striking beauty; exceedingly timid and shy, and shrinking from notice; but her air, though awkward, was not vulgar, her voice was sweet, and when she spoke her countenance was pretty. Sir Thomas and Lady Bertram received her very kindly; and Sir Thomas, seeing how much she needed encouragement, tried to be all that was conciliating: but he had to work against a most untoward gravity of deportment; and Lady Bertram, without taking half so much trouble, or speaking one word where he spoke ten, by the mere aid of a good-humored smile, became immediately the less awful character of the two.
The young people were all at home, and sustained their share in the introduction very well, with much good humor, and no embarrassment, at least on the part of the sons, who, at seventeen and sixteen, and tall of their age, had all the grandeur of men in the eyes of their little cousin. The two girls were more at a loss from being younger and in greater awe of their father, who addressed them on the occasion with rather an injudicious particularity. But they were too much used to company and praise to have anything like natural shyness; and their confidence increasing from their cousin's total want of it, they were soon able to take a full survey of her face and her frock in easy indifference.
They were a remarkably fine family, the sons very well-looking, the daughters decidedly handsome, and all of them well-grown and forward of their age, which produced as striking a difference between the cousins in person, as education had given to their address; and no one would have supposed the girls so nearly of an age as they really were. There were in fact but two years between the youngest and Fanny. Julia Bertram was only twelve, and Maria but a year older.
The little visitor meanwhile was as unhappy as possible. Afraid of everybody, ashamed of herself, and longing for the home she had left, she knew not how to look up, and could scarcely speak to be heard, or without crying. Mrs. Norris had been talking to her the whole way from Northampton of Fanny’s wonderful good fortune, and the extraordinary degree of gratitude and good behavior which it ought to produce, and her consciousness of misery was therefore increased by the idea of its being a wicked thing for her not to be happy.
The fatigue, too, of so long a journey, became soon no trifling evil. In vain were the well-meant condescensions of Sir Thomas, and all the officious prognostications of Mrs. Norris that she would be a good girl; in vain did Lady Bertram smile and make her sit on the sofa with herself and pug, and vain was even the sight of a gooseberry tart towards giving her comfort; she could scarcely swallow two mouthfuls before tears interrupted her, and sleep seeming to be her likeliest friend, she was taken to finish her sorrows in bed.
“This is not a very promising beginning,” said Mrs. Norris, when Fanny had left the room. “After all that I said to her as we came along, I thought she would have behaved better; I told her how much might depend upon her acquitting herself well at first. I wish there may not be a little sulkiness of temper—her poor mother had a good deal; but we must make allowances for such a child—and I do not know that her being sorry to leave her home is really against her, for, with all its faults, it was her home, and she cannot as yet understand how much she has changed for the better; but then there is moderation in all things.”
It required a longer time, however, than Mrs. Norris was inclined to allow to reconcile Fanny to the novelty of Mansfield Park, and the separation from everybody she had been used to. Her feelings were very acute and too little understood to be properly attended to. Nobody meant to be unkind, but nobody put themselves out of their way to secure her comfort.
Fanny, whether near or from her cousins, whether in the schoolroom, the drawing-room, or the shrubbery, was equally forlorn, finding something to fear in every person and place. She was disheartened by Lady Bertram's silence, awed by Sir Thomas's grave looks, and quite overcome by Mrs. Norris's admonitions. Her elder cousins mortified her by reflections on her size, and abashed her by noticing her shyness: Miss Lee wondered at her ignorance, and the maid-servants sneered at her clothes; and when to these sorrows was added the idea of the brothers and sisters among whom she had always been important as playfellow, instructress, and nurse, the despondence that sunk her little heart was severe.
In order to answer this specific question, you need to be able to find the place - or places - within the passage where the author mentions the sons' reactions to Fanny. While the third paragraph does mention Fanny's impressions of the two boys, it does not mention their reaction to her. Instead, you should look at the last paragraph, where the author describes the boys as mortifying her "by reflections on her size" and abashing her "by noticing her shyness." This implies that they were interested in her, allowing you to eliminate both "indifferent amusement" and "cold condescension" - they are neither indifferent nor cold. Between "distant kindness" and "teasing interest", while the interaction is not cruel, it also cannot be considered particularly kind, which allows you to eliminate "distant kindness"."Teasing interest" is correct. The boys do tease Fanny with the reflections on her size and shyness, but their interactions don't indicate kindness, only a general interest in her.
In order to answer this specific question, you need to be able to find the place - or places - within the passage where the author mentions the sons' reactions to Fanny. While the third paragraph does mention Fanny's impressions of the two boys, it does not mention their reaction to her. Instead, you should look at the last paragraph, where the author describes the boys as mortifying her "by reflections on her size" and abashing her "by noticing her shyness." This implies that they were interested in her, allowing you to eliminate both "indifferent amusement" and "cold condescension" - they are neither indifferent nor cold. Between "distant kindness" and "teasing interest", while the interaction is not cruel, it also cannot be considered particularly kind, which allows you to eliminate "distant kindness"."Teasing interest" is correct. The boys do tease Fanny with the reflections on her size and shyness, but their interactions don't indicate kindness, only a general interest in her.
Compare your answer with the correct one above
Which of the following hypothetical situations would the author find most likely?
This passage is adapted from Adam K. Fetterman and Kai Sassenberg, “The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists", first published in December 2015 by PLOS ONE.
We like to think of science as a purely rational. However, scientists are human and often identify with their work. Therefore, it should not be controversial to suggest that emotions are involved in replication discussions. Adding to this inherently emotionally volatile situation, the recent increase in the use of social media and blogs by scientists has allowed for instantaneous, unfiltered, and at times emotion-based commentary on research. Certainly social media has the potential to lead to many positive outcomes in science–among others, to create a more open science. To some, however, it seems as if this ease of communication is also leading to the public tar and feathering of scientists. Whether these assertions are true is up for debate, but we assume they are a part of many scientists’ subjective reality. Indeed, when failed replications are discussed in the same paragraphs as questionable research practices, or even fraud, it is hard to separate the science from the scientist. Questionable research practices and fraud are not about the science; they are about the scientist. We believe that these considerations are at least part of the reason that we find the overestimation effect that we do, here.
Even so, the current data suggests that while many are worried about how a failed replication would affect their reputation, it is probably not as bad as they think. Of course, the current data cannot provide evidence that there are no negative effects; just that the negative impact is overestimated. That said, everyone wants to be seen as competent and honest, but failed replications are a part of science. In fact, they are how science moves forward!
While we imply that these effects may be exacerbated by social media, the data cannot directly speak to this. However, any one of a number of cognitive biases may add support to this assumption and explain our findings. For example, it may be that a type of availability bias or pluralistic ignorance of which the more vocal and critical voices are leading individuals to judge current opinions as more negative than reality. As a result, it is easy to conflate discussions about direct replications with “witch- hunts” and overestimate the impact on one’s own reputation. Whatever the source may be, it is worth looking at the potential negative impact of social media in scientific conversations.
If the desire is to move science forward, scientists need to be able to acknowledge when they are wrong. Theories come and go, and scientists learn from their mistakes (if they can even be called “mistakes”). This is the point of science. However, holding on to faulty ideas flies in the face of the scientific method. Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. In some cases, this may be the proper response. Just as often, though, it is not. In most cases, admitting wrongness will have relatively fewer ill effects on one’s reputation than not admitting and it may be better for reputation. It could also be that wrongness admission repairs damage to reputation.
It may seem strange that others consider it less likely that questionable research practices, for example, were used when a scientist admits that they were wrong. However, it does make sense from the standpoint that wrongness admission seems to indicate honesty. Therefore, if one is honest in one domain, they are likely honest in other domains. Moreover, the refusal to admit might indicate to others that the original scientist is trying to cover something up. The lack of significance of most of the interactions in our study suggests that it even seems as if scientists might already realize this. Therefore, we can generally suggest that scientists admit they are wrong, but only when the evidence suggests they should.
The chart below maps how scientists view others' work (left) and how they suspect others will view their own work (right) if the researcher (the scientist or another, depending on the focus) admitted to engaging in questionable research practices.

Adapted from Fetterman & Sassenberg, "The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists." December 9, 2015, PLOS One.
Which of the following hypothetical situations would the author find most likely?
This passage is adapted from Adam K. Fetterman and Kai Sassenberg, “The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists", first published in December 2015 by PLOS ONE.
We like to think of science as a purely rational. However, scientists are human and often identify with their work. Therefore, it should not be controversial to suggest that emotions are involved in replication discussions. Adding to this inherently emotionally volatile situation, the recent increase in the use of social media and blogs by scientists has allowed for instantaneous, unfiltered, and at times emotion-based commentary on research. Certainly social media has the potential to lead to many positive outcomes in science–among others, to create a more open science. To some, however, it seems as if this ease of communication is also leading to the public tar and feathering of scientists. Whether these assertions are true is up for debate, but we assume they are a part of many scientists’ subjective reality. Indeed, when failed replications are discussed in the same paragraphs as questionable research practices, or even fraud, it is hard to separate the science from the scientist. Questionable research practices and fraud are not about the science; they are about the scientist. We believe that these considerations are at least part of the reason that we find the overestimation effect that we do, here.
Even so, the current data suggests that while many are worried about how a failed replication would affect their reputation, it is probably not as bad as they think. Of course, the current data cannot provide evidence that there are no negative effects; just that the negative impact is overestimated. That said, everyone wants to be seen as competent and honest, but failed replications are a part of science. In fact, they are how science moves forward!
While we imply that these effects may be exacerbated by social media, the data cannot directly speak to this. However, any one of a number of cognitive biases may add support to this assumption and explain our findings. For example, it may be that a type of availability bias or pluralistic ignorance of which the more vocal and critical voices are leading individuals to judge current opinions as more negative than reality. As a result, it is easy to conflate discussions about direct replications with “witch- hunts” and overestimate the impact on one’s own reputation. Whatever the source may be, it is worth looking at the potential negative impact of social media in scientific conversations.
If the desire is to move science forward, scientists need to be able to acknowledge when they are wrong. Theories come and go, and scientists learn from their mistakes (if they can even be called “mistakes”). This is the point of science. However, holding on to faulty ideas flies in the face of the scientific method. Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. In some cases, this may be the proper response. Just as often, though, it is not. In most cases, admitting wrongness will have relatively fewer ill effects on one’s reputation than not admitting and it may be better for reputation. It could also be that wrongness admission repairs damage to reputation.
It may seem strange that others consider it less likely that questionable research practices, for example, were used when a scientist admits that they were wrong. However, it does make sense from the standpoint that wrongness admission seems to indicate honesty. Therefore, if one is honest in one domain, they are likely honest in other domains. Moreover, the refusal to admit might indicate to others that the original scientist is trying to cover something up. The lack of significance of most of the interactions in our study suggests that it even seems as if scientists might already realize this. Therefore, we can generally suggest that scientists admit they are wrong, but only when the evidence suggests they should.
The chart below maps how scientists view others' work (left) and how they suspect others will view their own work (right) if the researcher (the scientist or another, depending on the focus) admitted to engaging in questionable research practices.
Adapted from Fetterman & Sassenberg, "The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists." December 9, 2015, PLOS One.
To determine which statement the author would most likely agree with, it is helpful to take each statement and find a discussion of it (or something similar) in the passage. If we look at the fourth paragraph, the author makes a statement that can help you infer the correct answer. "Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. " If researchers, in general, don't want to admit wrongness, it wouldn't be surprising for a scientist to not admit that the findings of their study cannot be replicated. Thus, the correct answer is "a researcher does not admit that the findings of a study cannot be replicated because they fear that their other work will be less trusted."
To determine which statement the author would most likely agree with, it is helpful to take each statement and find a discussion of it (or something similar) in the passage. If we look at the fourth paragraph, the author makes a statement that can help you infer the correct answer. "Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. " If researchers, in general, don't want to admit wrongness, it wouldn't be surprising for a scientist to not admit that the findings of their study cannot be replicated. Thus, the correct answer is "a researcher does not admit that the findings of a study cannot be replicated because they fear that their other work will be less trusted."
Compare your answer with the correct one above
Which of the following is suggested about the gene inversion?
The following passage is adapted from Ricki Lewis, "Did Donkeys Arise from an Inverted Chromosome?", originally published 2018 in PLOSOne Blogs.
In the world of genome sequencing, donkeys haven’t received nearly as much attention as horses. But now a report on a new-and-improved genome sequence of Willy, a donkey (Equus asinus) jack 5 born at the Copenhagen Zoo in 1997, appears in the new issue of Science Advances, from Gabriel Renaud, of the Centre for GeoGenetics, Natural History Museum of Denmark. (A female is a jenny or jennet.) The new view provides clues to how donkeys may have branched from horses along the tree of evolution.
Horses and their relatives, past and present, are genetically peculiar in that their chromosomes are rearranged, with respect to each other. That should prevent them from producing viable hybrids – yet they do. Donkeys have 62 chromosomes and horses have 64. A mule comes from the mating of a male donkey and a female horse, and has 63 chromosomes. Mules are known for their intelligence, calm, stamina, and persistence. Their horse-like bodies perched on donkey-like limbs make them ideal for hauling tourists around the Grand Canyon and schlepping supplies in combat situations. The ears are large like those of the horse mom, and mules make a sound that begins as a whinny and becomes a bray.
The complementary couple, a female donkey and a male horse, produces a hinny, smaller than a mule. Hinnies are the flip side of the mule, with a donkey’s physique atop horsey limbs, and short donkey ears. They’re rarer than mules, but also have 63 chromosomes. It’s easy to mix them up.
Comparing Willy’s genome to a horse genome revealed their close evolutionary relationship. Only about 15% of horse genes aren’t also in the donkey genome, and only about 10% of a donkey’s genes don’t have counterparts in the horse. Most of the genes that they share provide basic “housekeeping” functions like dismantling proteins, repairing DNA, enabling embryonic development, and controlling cell division. So that’s why a copy of each genome can smush together to yield mules and hinnies.
The second form of information encoded in genomes, in addition to the A, C, T, G sequence, is the pattern of whether the two variants of individual genes are different (heterozygous) or the same (homozygous). Many contiguous homozygous genes form a “run of homozygosity” (ROH).
An ROH indicates a chromosome chunk, perhaps as long as millions of DNA bases, that’s the same from each of an individual’s parents, who in turn inherited it from a shared ancestor, like a grandparent that cousins share. The longer the ROH, the more recent the shared ancestor, because it takes time for mutations to accrue that would break the sameness of the sequence.
Scrutinizing ROHs can reveal recent inbreeding and domestication, help to reconstruct possible branching patterns of evolution, and, more practically, help ancestry companies assign the DNA in spit samples to geographic areas where people’s ancestors might have come from. The new study compared ROHs for the three zebra and three ass species, confirming that Willy’s most recent ancestors were Somali wild asses.
The researchers used the Chicago HiRise assembly technology to up the quality of Willy’s genome sequence. “This new assembly allowed us to identify fine chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation,” they write.
The bigger pieces enabled them to zero in on DNA sequences where chromosomes contort, such as inversions (where a sequence flips) or translocations (where different chromosome types exchange parts). These events could have fueled the reproductive isolation of small populations that can expand into speciation.
If eventually sperm with one inverted chromosome fertilized eggs with the same inversion, animals would have been conceived in which both copies of the chromosome are inverted – and they’d be fertile with each other, but not with horses. Once a subpopulation with the inversion became established, further genetic changes would separate them further from the ancestral horse.
Which of the following is suggested about the gene inversion?
The following passage is adapted from Ricki Lewis, "Did Donkeys Arise from an Inverted Chromosome?", originally published 2018 in PLOSOne Blogs.
In the world of genome sequencing, donkeys haven’t received nearly as much attention as horses. But now a report on a new-and-improved genome sequence of Willy, a donkey (Equus asinus) jack 5 born at the Copenhagen Zoo in 1997, appears in the new issue of Science Advances, from Gabriel Renaud, of the Centre for GeoGenetics, Natural History Museum of Denmark. (A female is a jenny or jennet.) The new view provides clues to how donkeys may have branched from horses along the tree of evolution.
Horses and their relatives, past and present, are genetically peculiar in that their chromosomes are rearranged, with respect to each other. That should prevent them from producing viable hybrids – yet they do. Donkeys have 62 chromosomes and horses have 64. A mule comes from the mating of a male donkey and a female horse, and has 63 chromosomes. Mules are known for their intelligence, calm, stamina, and persistence. Their horse-like bodies perched on donkey-like limbs make them ideal for hauling tourists around the Grand Canyon and schlepping supplies in combat situations. The ears are large like those of the horse mom, and mules make a sound that begins as a whinny and becomes a bray.
The complementary couple, a female donkey and a male horse, produces a hinny, smaller than a mule. Hinnies are the flip side of the mule, with a donkey’s physique atop horsey limbs, and short donkey ears. They’re rarer than mules, but also have 63 chromosomes. It’s easy to mix them up.
Comparing Willy’s genome to a horse genome revealed their close evolutionary relationship. Only about 15% of horse genes aren’t also in the donkey genome, and only about 10% of a donkey’s genes don’t have counterparts in the horse. Most of the genes that they share provide basic “housekeeping” functions like dismantling proteins, repairing DNA, enabling embryonic development, and controlling cell division. So that’s why a copy of each genome can smush together to yield mules and hinnies.
The second form of information encoded in genomes, in addition to the A, C, T, G sequence, is the pattern of whether the two variants of individual genes are different (heterozygous) or the same (homozygous). Many contiguous homozygous genes form a “run of homozygosity” (ROH).
An ROH indicates a chromosome chunk, perhaps as long as millions of DNA bases, that’s the same from each of an individual’s parents, who in turn inherited it from a shared ancestor, like a grandparent that cousins share. The longer the ROH, the more recent the shared ancestor, because it takes time for mutations to accrue that would break the sameness of the sequence.
Scrutinizing ROHs can reveal recent inbreeding and domestication, help to reconstruct possible branching patterns of evolution, and, more practically, help ancestry companies assign the DNA in spit samples to geographic areas where people’s ancestors might have come from. The new study compared ROHs for the three zebra and three ass species, confirming that Willy’s most recent ancestors were Somali wild asses.
The researchers used the Chicago HiRise assembly technology to up the quality of Willy’s genome sequence. “This new assembly allowed us to identify fine chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation,” they write.
The bigger pieces enabled them to zero in on DNA sequences where chromosomes contort, such as inversions (where a sequence flips) or translocations (where different chromosome types exchange parts). These events could have fueled the reproductive isolation of small populations that can expand into speciation.
If eventually sperm with one inverted chromosome fertilized eggs with the same inversion, animals would have been conceived in which both copies of the chromosome are inverted – and they’d be fertile with each other, but not with horses. Once a subpopulation with the inversion became established, further genetic changes would separate them further from the ancestral horse.
The answer to this question can be found in the last sentence which states that if an egg and a sperm with the same inversion are combined, the children of that pairing would be fertile with each other but not with horses. In other words, under that particular circumstance, gene inversion could lead to reproductive isolation. Thus, "under some circumstances it can lead to reproductive isolation" is the correct answer.
The answer to this question can be found in the last sentence which states that if an egg and a sperm with the same inversion are combined, the children of that pairing would be fertile with each other but not with horses. In other words, under that particular circumstance, gene inversion could lead to reproductive isolation. Thus, "under some circumstances it can lead to reproductive isolation" is the correct answer.
Compare your answer with the correct one above
Based on the passage, which of the following findings may call into question the claim that learning to read does not affect parts of the brain other than the VWFA?
The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.
The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.
Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.
In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year-old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.
Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.
What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.
These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.
The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”
The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.

Based on the passage, which of the following findings may call into question the claim that learning to read does not affect parts of the brain other than the VWFA?
The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”", PLOS Neuro Community, 2018.
The ability to recognize, process and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.
Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.
In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year-old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.
Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning. In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.
What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.
These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.
The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”
The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.
The answer to this question can be found in the 4th paragraph: "In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills." So, "reading development affects both the VWFA and the part of the brain used to interpret numbers" is the correct answer.
The answer to this question can be found in the 4th paragraph: "In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills." So, "reading development affects both the VWFA and the part of the brain used to interpret numbers" is the correct answer.
Compare your answer with the correct one above
It can be inferred from the passage that Susan B. Anthony:
The following passage is adapted from a speech delivered by Susan B. Anthony in 1873. The speech was delivered after Anthony was tried and fined \$100 for voting in the 1872 presidential election.
Friends and fellow citizens: I stand before you tonight under indictment for the alleged crime of having voted at the last Presidential election, without having a lawful right to vote. It shall be my work this evening to prove to you that in thus voting, I not only committed no crime, but, instead, simply exercised my citizen’s rights, guaranteed to me and all United States citizens by the National Constitution, beyond the power of any State to deny.
The preamble of the Federal Constitution says: “We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquillity, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this Constitution for the United States of America.”
It was we, the people; not we, the white male citizens; nor yet we, the male citizens; but we, the whole people, who formed the Union. And we formed it, not to give the blessings of liberty, but to secure them; not to the half of ourselves and the half of our posterity, but to the whole people— women as well as men. And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.
For any State to make sex a qualification that must ever result in the disfranchisement of one entire half of the people is a violation of the supreme law of the land. By it the blessings of liberty are forever withheld from women and their female posterity. To them this government had no just powers derived from the consent of the governed. To them this government is not a democracy. It is not a republic. It is an odious aristocracy; a hateful oligarchy of sex; the most hateful aristocracy ever established on the face of the globe; an oligarchy of wealth, where the right govern the poor. An oligarchy of learning, where the educated govern the ignorant, or even an oligarchy of race, where the Saxon rules the African, might be endured, but this oligarchy of sex, which makes father, brothers, husband, sons, the oligarchs over the mother and sisters, the wife and daughters of every household—which ordains all men sovereigns, all women subjects, carries dissension, discord and rebellion into every home of the nation.
Webster, Worcester and Bouvier all define a citizen to be a person in the United States, entitled to vote and hold office. The one question left to be settled now is: Are women persons? And I hardly believe any of our opponents will have the hardihood to say they are not. Being persons, then, women are citizens; and no State has a right to make any law, or to enforce any old law, that shall abridge their privileges or immunities. Hence, every discrimination against women are citizenswomen in the constitutions and laws of the several States is today null and void, precisely as is every one against African Americans.
It can be inferred from the passage that Susan B. Anthony:
The following passage is adapted from a speech delivered by Susan B. Anthony in 1873. The speech was delivered after Anthony was tried and fined \$100 for voting in the 1872 presidential election.
Friends and fellow citizens: I stand before you tonight under indictment for the alleged crime of having voted at the last Presidential election, without having a lawful right to vote. It shall be my work this evening to prove to you that in thus voting, I not only committed no crime, but, instead, simply exercised my citizen’s rights, guaranteed to me and all United States citizens by the National Constitution, beyond the power of any State to deny.
The preamble of the Federal Constitution says: “We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquillity, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this Constitution for the United States of America.”
It was we, the people; not we, the white male citizens; nor yet we, the male citizens; but we, the whole people, who formed the Union. And we formed it, not to give the blessings of liberty, but to secure them; not to the half of ourselves and the half of our posterity, but to the whole people— women as well as men. And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.
For any State to make sex a qualification that must ever result in the disfranchisement of one entire half of the people is a violation of the supreme law of the land. By it the blessings of liberty are forever withheld from women and their female posterity. To them this government had no just powers derived from the consent of the governed. To them this government is not a democracy. It is not a republic. It is an odious aristocracy; a hateful oligarchy of sex; the most hateful aristocracy ever established on the face of the globe; an oligarchy of wealth, where the right govern the poor. An oligarchy of learning, where the educated govern the ignorant, or even an oligarchy of race, where the Saxon rules the African, might be endured, but this oligarchy of sex, which makes father, brothers, husband, sons, the oligarchs over the mother and sisters, the wife and daughters of every household—which ordains all men sovereigns, all women subjects, carries dissension, discord and rebellion into every home of the nation.
Webster, Worcester and Bouvier all define a citizen to be a person in the United States, entitled to vote and hold office. The one question left to be settled now is: Are women persons? And I hardly believe any of our opponents will have the hardihood to say they are not. Being persons, then, women are citizens; and no State has a right to make any law, or to enforce any old law, that shall abridge their privileges or immunities. Hence, every discrimination against women are citizenswomen in the constitutions and laws of the several States is today null and void, precisely as is every one against African Americans.
In this example, we’re looking to find the answer that, while not necessarily directly stated, is directly implied by the information in the text. We cannot conclude that Anthony necessarily agreed with Webster, Worcester and Bouvier’s views on voting rights. In fact, contextually, it seems more likely that she was using their words to express the disconnect between current opinion/voting rules and the constitution. Anthony also did not necessarily think or know that women would soon receive the right to vote - though we do know she believes that women *should* have the right to vote. Anthony uses the fact that the United States is a democratic republic to insist that the country should start acting as one, so we can also not infer that she “accepted that the United States was not really a democratic republic.” We can, however, infer that she believed that the constitution was not being properly interpreted, as she - throughout her speech - contrasted current voting laws with the rights that she insisted were guaranteed to her by the constitution.
In this example, we’re looking to find the answer that, while not necessarily directly stated, is directly implied by the information in the text. We cannot conclude that Anthony necessarily agreed with Webster, Worcester and Bouvier’s views on voting rights. In fact, contextually, it seems more likely that she was using their words to express the disconnect between current opinion/voting rules and the constitution. Anthony also did not necessarily think or know that women would soon receive the right to vote - though we do know she believes that women *should* have the right to vote. Anthony uses the fact that the United States is a democratic republic to insist that the country should start acting as one, so we can also not infer that she “accepted that the United States was not really a democratic republic.” We can, however, infer that she believed that the constitution was not being properly interpreted, as she - throughout her speech - contrasted current voting laws with the rights that she insisted were guaranteed to her by the constitution.
Compare your answer with the correct one above
The passage implies that:
The following is an excerpt from Agnes Grey, an autobiographical novel by Anne Bronte that follows the life of a governess working in wealthy British households in the 19th century.
To avoid trouble and confusion, I have taken my pupils one by one, and discussed their various qualities; but this can give no adequate idea of being worried by the whole three together; when, as was often the case, all were determined to ‘be naughty, and to tease Miss Grey, and put her in a passion.’
Sometimes, on such occasions, the thought has suddenly occurred to me—’If they could see me now!’ meaning, of course, my friends at home; and the idea of how they would pity me has made me pity myself—so greatly that I have had the utmost difficulty to restrain my tears: but I have restrained them, till my little tormentors were gone to dessert, or cleared off to bed (my only prospects of deliverance), and then, in all the bliss of solitude, I have given myself up to the luxury of an unrestricted burst of weeping. But this was a weakness I did not often indulge: my employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.
I particularly remember one wild, snowy afternoon, soon after my return in January: the children had all come up from dinner, loudly declaring that they meant ‘to be naughty;’ and they had well kept their resolution, though I had talked myself hoarse, and wearied every muscle in my throat, in the vain attempt to reason them out of it. I had got Tom pinned up in a corner, whence, I told him, he should not escape till he had done his appointed task. Meantime, Fanny had possessed herself of my workbag, and was rifling its contents—and spitting into it besides. I told her to let it alone, but to no purpose, of course. ‘Burn it, Fanny!’ cried Tom: and this command she hastened to obey. I sprang to snatch it from the fire, and Tom darted to the door. ‘Mary Ann, throw her desk out of the window!’ cried he: and my precious desk, containing my letters and papers, my small amount of cash, and all my valuables, was about to be precipitated from the three-story window. I flew to rescue it. Meanwhile Tom had left the room, and was rushing down the stairs, followed by Fanny. Having secured my desk, I ran to catch them, and Mary Ann came scampering after. All three escaped me, and ran out of the house into the garden, where they plunged about in the snow, shouting and screaming in exultant glee.
What must I do? If I followed them, I should probably be unable to capture one, and only drive them farther away; if I did not, how was I to get them in? And what would their parents think of me, if they saw or heard the children rioting, hatless, bonnetless, gloveless, and bootless, in the deep soft snow?
The passage implies that:
The following is an excerpt from Agnes Grey, an autobiographical novel by Anne Bronte that follows the life of a governess working in wealthy British households in the 19th century.
To avoid trouble and confusion, I have taken my pupils one by one, and discussed their various qualities; but this can give no adequate idea of being worried by the whole three together; when, as was often the case, all were determined to ‘be naughty, and to tease Miss Grey, and put her in a passion.’
Sometimes, on such occasions, the thought has suddenly occurred to me—’If they could see me now!’ meaning, of course, my friends at home; and the idea of how they would pity me has made me pity myself—so greatly that I have had the utmost difficulty to restrain my tears: but I have restrained them, till my little tormentors were gone to dessert, or cleared off to bed (my only prospects of deliverance), and then, in all the bliss of solitude, I have given myself up to the luxury of an unrestricted burst of weeping. But this was a weakness I did not often indulge: my employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.
I particularly remember one wild, snowy afternoon, soon after my return in January: the children had all come up from dinner, loudly declaring that they meant ‘to be naughty;’ and they had well kept their resolution, though I had talked myself hoarse, and wearied every muscle in my throat, in the vain attempt to reason them out of it. I had got Tom pinned up in a corner, whence, I told him, he should not escape till he had done his appointed task. Meantime, Fanny had possessed herself of my workbag, and was rifling its contents—and spitting into it besides. I told her to let it alone, but to no purpose, of course. ‘Burn it, Fanny!’ cried Tom: and this command she hastened to obey. I sprang to snatch it from the fire, and Tom darted to the door. ‘Mary Ann, throw her desk out of the window!’ cried he: and my precious desk, containing my letters and papers, my small amount of cash, and all my valuables, was about to be precipitated from the three-story window. I flew to rescue it. Meanwhile Tom had left the room, and was rushing down the stairs, followed by Fanny. Having secured my desk, I ran to catch them, and Mary Ann came scampering after. All three escaped me, and ran out of the house into the garden, where they plunged about in the snow, shouting and screaming in exultant glee.
What must I do? If I followed them, I should probably be unable to capture one, and only drive them farther away; if I did not, how was I to get them in? And what would their parents think of me, if they saw or heard the children rioting, hatless, bonnetless, gloveless, and bootless, in the deep soft snow?
In this example, we can use the process of elimination to find the appropriate inference. We don’t have any evidence of Miss Grey seeking employment elsewhere, nor do we know that the parents were displeased with Miss Grey’s care of the children. We know Miss Grey worries what they might think if they found her in the wrong, but we have no evidence that this has happened in the past. In fact - we have no evidence of interactions with the parents at all! We also don’t know that each child was more difficult individually. In fact, paragraph one of the passage states that “I have taken my pupils one by one and discussed their various qualities, but this can give no adequate idea of being worried by the whole three together.” This implies that while the children were problematic to deal with individually, this issue was made all the worse when they were together. So, we can confidently say that “Miss Grey had some difficulties with the children individually.”
In this example, we can use the process of elimination to find the appropriate inference. We don’t have any evidence of Miss Grey seeking employment elsewhere, nor do we know that the parents were displeased with Miss Grey’s care of the children. We know Miss Grey worries what they might think if they found her in the wrong, but we have no evidence that this has happened in the past. In fact - we have no evidence of interactions with the parents at all! We also don’t know that each child was more difficult individually. In fact, paragraph one of the passage states that “I have taken my pupils one by one and discussed their various qualities, but this can give no adequate idea of being worried by the whole three together.” This implies that while the children were problematic to deal with individually, this issue was made all the worse when they were together. So, we can confidently say that “Miss Grey had some difficulties with the children individually.”
Compare your answer with the correct one above
The passage suggests which of the following was true in 1873:
The following passage is adapted from a speech delivered by Susan B. Anthony in 1873. The speech was delivered after Anthony was tried and fined \$100 for voting in the 1872 presidential election.
Friends and fellow citizens: I stand before you tonight under indictment for the alleged crime of having voted at the last Presidential election, without having a lawful right to vote. It shall be my work this evening to prove to you that in thus voting, I not only committed no crime, but, instead, simply exercised my citizen’s rights, guaranteed to me and all United States citizens by the National Constitution, beyond the power of any State to deny.
The preamble of the Federal Constitution says: “We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquillity, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this Constitution for the United States of America.”
It was we, the people; not we, the white male citizens; nor yet we, the male citizens; but we, the whole people, who formed the Union. And we formed it, not to give the blessings of liberty, but to secure them; not to the half of ourselves and the half of our posterity, but to the whole people— women as well as men. And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.
For any State to make sex a qualification that must ever result in the disfranchisement of one entire half of the people is a violation of the supreme law of the land. By it the blessings of liberty are forever withheld from women and their female posterity. To them this government had no just powers derived from the consent of the governed. To them this government is not a democracy. It is not a republic. It is an odious aristocracy; a hateful oligarchy of sex; the most hateful aristocracy ever established on the face of the globe; an oligarchy of wealth, where the right govern the poor. An oligarchy of learning, where the educated govern the ignorant, or even an oligarchy of race, where the Saxon rules the African, might be endured, but this oligarchy of sex, which makes father, brothers, husband, sons, the oligarchs over the mother and sisters, the wife and daughters of every household—which ordains all men sovereigns, all women subjects, carries dissension, discord and rebellion into every home of the nation.
Webster, Worcester and Bouvier all define a citizen to be a person in the United States, entitled to vote and hold office. The one question left to be settled now is: Are women persons? And I hardly believe any of our opponents will have the hardihood to say they are not. Being persons, then, women are citizens; and no State has a right to make any law, or to enforce any old law, that shall abridge their privileges or immunities. Hence, every discrimination against women are citizenswomen in the constitutions and laws of the several States is today null and void, precisely as is everyone against African Americans.
The passage suggests which of the following was true in 1873:
The following passage is adapted from a speech delivered by Susan B. Anthony in 1873. The speech was delivered after Anthony was tried and fined \$100 for voting in the 1872 presidential election.
Friends and fellow citizens: I stand before you tonight under indictment for the alleged crime of having voted at the last Presidential election, without having a lawful right to vote. It shall be my work this evening to prove to you that in thus voting, I not only committed no crime, but, instead, simply exercised my citizen’s rights, guaranteed to me and all United States citizens by the National Constitution, beyond the power of any State to deny.
The preamble of the Federal Constitution says: “We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquillity, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this Constitution for the United States of America.”
It was we, the people; not we, the white male citizens; nor yet we, the male citizens; but we, the whole people, who formed the Union. And we formed it, not to give the blessings of liberty, but to secure them; not to the half of ourselves and the half of our posterity, but to the whole people— women as well as men. And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.
For any State to make sex a qualification that must ever result in the disfranchisement of one entire half of the people is a violation of the supreme law of the land. By it the blessings of liberty are forever withheld from women and their female posterity. To them this government had no just powers derived from the consent of the governed. To them this government is not a democracy. It is not a republic. It is an odious aristocracy; a hateful oligarchy of sex; the most hateful aristocracy ever established on the face of the globe; an oligarchy of wealth, where the right govern the poor. An oligarchy of learning, where the educated govern the ignorant, or even an oligarchy of race, where the Saxon rules the African, might be endured, but this oligarchy of sex, which makes father, brothers, husband, sons, the oligarchs over the mother and sisters, the wife and daughters of every household—which ordains all men sovereigns, all women subjects, carries dissension, discord and rebellion into every home of the nation.
Webster, Worcester and Bouvier all define a citizen to be a person in the United States, entitled to vote and hold office. The one question left to be settled now is: Are women persons? And I hardly believe any of our opponents will have the hardihood to say they are not. Being persons, then, women are citizens; and no State has a right to make any law, or to enforce any old law, that shall abridge their privileges or immunities. Hence, every discrimination against women are citizenswomen in the constitutions and laws of the several States is today null and void, precisely as is everyone against African Americans.
While it is - unfortunately - likely true that at the time, women had less access to education than men, this cannot be inferred directly from the passage. We also do not have any indication that women and African-Americans had the same voting rights at the time. (And we shouldn’t need information outside of what’s given in the passage to answer the question!) We are also given no information about the differences between federal and state laws. So, we’re left with our correct answer: “women did not enjoy the same degree of liberty as men.” We can see that this is inferrable based on the context at the close of the third paragraph: “and it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.” This context implies that Anthony believes that women cannot possess the same freedoms if they do not have the ability to exercise these freedoms in the form of a vote.
While it is - unfortunately - likely true that at the time, women had less access to education than men, this cannot be inferred directly from the passage. We also do not have any indication that women and African-Americans had the same voting rights at the time. (And we shouldn’t need information outside of what’s given in the passage to answer the question!) We are also given no information about the differences between federal and state laws. So, we’re left with our correct answer: “women did not enjoy the same degree of liberty as men.” We can see that this is inferrable based on the context at the close of the third paragraph: “and it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.” This context implies that Anthony believes that women cannot possess the same freedoms if they do not have the ability to exercise these freedoms in the form of a vote.
Compare your answer with the correct one above
The passage suggests that Miss Grey
The following is an excerpt from Agnes Grey, an autobiographical novel by Anne Bronte that follows the life of a governess working in wealthy British households in the 19th century.
To avoid trouble and confusion, I have taken my pupils one by one, and discussed their various qualities; but this can give no adequate idea of being worried by the whole three together; when, as was often the case, all were determined to ‘be naughty, and to tease Miss Grey, and put her in a passion.’
Sometimes, on such occasions, the thought has suddenly occurred to me—’If they could see me now!’ meaning, of course, my friends at home; and the idea of how they would pity me has made me pity myself—so greatly that I have had the utmost difficulty to restrain my tears: but I have restrained them, till my little tormentors were gone to dessert, or cleared off to bed (my only prospects of deliverance), and then, in all the bliss of solitude, I have given myself up to the luxury of an unrestricted burst of weeping. But this was a weakness I did not often indulge: my employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.
I particularly remember one wild, snowy afternoon, soon after my return in January: the children had all come up from dinner, loudly declaring that they meant ‘to be naughty;’ and they had well kept their resolution, though I had talked myself hoarse, and wearied every muscle in my throat, in the vain attempt to reason them out of it. I had got Tom pinned up in a corner, whence, I told him, he should not escape till he had done his appointed task. Meantime, Fanny had possessed herself of my workbag, and was rifling its contents—and spitting into it besides. I told her to let it alone, but to no purpose, of course. ‘Burn it, Fanny!’ cried Tom: and this command she hastened to obey. I sprang to snatch it from the fire, and Tom darted to the door. ‘Mary Ann, throw her desk out of the window!’ cried he: and my precious desk, containing my letters and papers, my small amount of cash, and all my valuables, was about to be precipitated from the three-story window. I flew to rescue it. Meanwhile Tom had left the room, and was rushing down the stairs, followed by Fanny. Having secured my desk, I ran to catch them, and Mary Ann came scampering after. All three escaped me, and ran out of the house into the garden, where they plunged about in the snow, shouting and screaming in exultant glee.
What must I do? If I followed them, I should probably be unable to capture one, and only drive them farther away; if I did not, how was I to get them in? And what would their parents think of me, if they saw or heard the children rioting, hatless, bonnetless, gloveless, and bootless, in the deep soft snow?
The passage suggests that Miss Grey
The following is an excerpt from Agnes Grey, an autobiographical novel by Anne Bronte that follows the life of a governess working in wealthy British households in the 19th century.
To avoid trouble and confusion, I have taken my pupils one by one, and discussed their various qualities; but this can give no adequate idea of being worried by the whole three together; when, as was often the case, all were determined to ‘be naughty, and to tease Miss Grey, and put her in a passion.’
Sometimes, on such occasions, the thought has suddenly occurred to me—’If they could see me now!’ meaning, of course, my friends at home; and the idea of how they would pity me has made me pity myself—so greatly that I have had the utmost difficulty to restrain my tears: but I have restrained them, till my little tormentors were gone to dessert, or cleared off to bed (my only prospects of deliverance), and then, in all the bliss of solitude, I have given myself up to the luxury of an unrestricted burst of weeping. But this was a weakness I did not often indulge: my employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.
I particularly remember one wild, snowy afternoon, soon after my return in January: the children had all come up from dinner, loudly declaring that they meant ‘to be naughty;’ and they had well kept their resolution, though I had talked myself hoarse, and wearied every muscle in my throat, in the vain attempt to reason them out of it. I had got Tom pinned up in a corner, whence, I told him, he should not escape till he had done his appointed task. Meantime, Fanny had possessed herself of my workbag, and was rifling its contents—and spitting into it besides. I told her to let it alone, but to no purpose, of course. ‘Burn it, Fanny!’ cried Tom: and this command she hastened to obey. I sprang to snatch it from the fire, and Tom darted to the door. ‘Mary Ann, throw her desk out of the window!’ cried he: and my precious desk, containing my letters and papers, my small amount of cash, and all my valuables, was about to be precipitated from the three-story window. I flew to rescue it. Meanwhile Tom had left the room, and was rushing down the stairs, followed by Fanny. Having secured my desk, I ran to catch them, and Mary Ann came scampering after. All three escaped me, and ran out of the house into the garden, where they plunged about in the snow, shouting and screaming in exultant glee.
What must I do? If I followed them, I should probably be unable to capture one, and only drive them farther away; if I did not, how was I to get them in? And what would their parents think of me, if they saw or heard the children rioting, hatless, bonnetless, gloveless, and bootless, in the deep soft snow?
In the passage, we can cite direct support for our correct answer: “spends a majority of her time working,” if we look to the close of paragraph two, in which the author cites that her “employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.” Essentially, she would burst into tears, but she cannot spare the time! This answer is also supported by context earlier in the paragraph in which she cites that “little tormentors were gone to dessert, or cleared off to bed” she was able to find her “only prospects of deliverance,” or her only break from the work. We certainly can’t conclude that she has an abundance of free time, nor that she has recently begun employment. In fact, the context would suggest otherwise, as paragraph three cites a past experience with the children - presumably one of many! Finally, though Miss Grey is apprehensive about what her employers might think if they found that she had done something wrong or endangered the children, we have no evidence of any current interactions with them, and thus no indication that she is frequently scolded by her employers.
In the passage, we can cite direct support for our correct answer: “spends a majority of her time working,” if we look to the close of paragraph two, in which the author cites that her “employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.” Essentially, she would burst into tears, but she cannot spare the time! This answer is also supported by context earlier in the paragraph in which she cites that “little tormentors were gone to dessert, or cleared off to bed” she was able to find her “only prospects of deliverance,” or her only break from the work. We certainly can’t conclude that she has an abundance of free time, nor that she has recently begun employment. In fact, the context would suggest otherwise, as paragraph three cites a past experience with the children - presumably one of many! Finally, though Miss Grey is apprehensive about what her employers might think if they found that she had done something wrong or endangered the children, we have no evidence of any current interactions with them, and thus no indication that she is frequently scolded by her employers.
Compare your answer with the correct one above
Which of the following best describes the attitude of Miss Grey toward the parents of the three children?
The following is an excerpt from Agnes Grey, an autobiographical novel by Anne Bronte that follows the life of a governess working in wealthy British households in the 19th century.
To avoid trouble and confusion, I have taken my pupils one by one, and discussed their various qualities; but this can give no adequate idea of being worried by the whole three together; when, as was often the case, all were determined to ‘be naughty, and to tease Miss Grey, and put her in a passion.’
Sometimes, on such occasions, the thought has suddenly occurred to me—’If they could see me now!’ meaning, of course, my friends at home; and the idea of how they would pity me has made me pity myself—so greatly that I have had the utmost difficulty to restrain my tears: but I have restrained them, till my little tormentors were gone to dessert, or cleared off to bed (my only prospects of deliverance), and then, in all the bliss of solitude, I have given myself up to the luxury of an unrestricted burst of weeping. But this was a weakness I did not often indulge: my employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.
I particularly remember one wild, snowy afternoon, soon after my return in January: the children had all come up from dinner, loudly declaring that they meant ‘to be naughty;’ and they had well kept their resolution, though I had talked myself hoarse, and wearied every muscle in my throat, in the vain attempt to reason them out of it. I had got Tom pinned up in a corner, whence, I told him, he should not escape till he had done his appointed task. Meantime, Fanny had possessed herself of my workbag, and was rifling its contents—and spitting into it besides. I told her to let it alone, but to no purpose, of course. ‘Burn it, Fanny!’ cried Tom: and this command she hastened to obey. I sprang to snatch it from the fire, and Tom darted to the door. ‘Mary Ann, throw her desk out of the window!’ cried he: and my precious desk, containing my letters and papers, my small amount of cash, and all my valuables, was about to be precipitated from the three-story window. I flew to rescue it. Meanwhile, Tom had left the room, and was rushing down the stairs, followed by Fanny. Having secured my desk, I ran to catch them, and Mary Ann came scampering after. All three escaped me, and ran out of the house into the garden, where they plunged about in the snow, shouting and screaming in exultant glee.
What must I do? If I followed them, I should probably be unable to capture one, and only drive them farther away; if I did not, how was I to get them in? And what would their parents think of me, if they saw or heard the children rioting, hatless, bonnetless, gloveless, and bootless, in the deep soft snow?
Which of the following best describes the attitude of Miss Grey toward the parents of the three children?
The following is an excerpt from Agnes Grey, an autobiographical novel by Anne Bronte that follows the life of a governess working in wealthy British households in the 19th century.
To avoid trouble and confusion, I have taken my pupils one by one, and discussed their various qualities; but this can give no adequate idea of being worried by the whole three together; when, as was often the case, all were determined to ‘be naughty, and to tease Miss Grey, and put her in a passion.’
Sometimes, on such occasions, the thought has suddenly occurred to me—’If they could see me now!’ meaning, of course, my friends at home; and the idea of how they would pity me has made me pity myself—so greatly that I have had the utmost difficulty to restrain my tears: but I have restrained them, till my little tormentors were gone to dessert, or cleared off to bed (my only prospects of deliverance), and then, in all the bliss of solitude, I have given myself up to the luxury of an unrestricted burst of weeping. But this was a weakness I did not often indulge: my employments were too numerous, my leisure moments too precious, to admit of much time being given to fruitless lamentations.
I particularly remember one wild, snowy afternoon, soon after my return in January: the children had all come up from dinner, loudly declaring that they meant ‘to be naughty;’ and they had well kept their resolution, though I had talked myself hoarse, and wearied every muscle in my throat, in the vain attempt to reason them out of it. I had got Tom pinned up in a corner, whence, I told him, he should not escape till he had done his appointed task. Meantime, Fanny had possessed herself of my workbag, and was rifling its contents—and spitting into it besides. I told her to let it alone, but to no purpose, of course. ‘Burn it, Fanny!’ cried Tom: and this command she hastened to obey. I sprang to snatch it from the fire, and Tom darted to the door. ‘Mary Ann, throw her desk out of the window!’ cried he: and my precious desk, containing my letters and papers, my small amount of cash, and all my valuables, was about to be precipitated from the three-story window. I flew to rescue it. Meanwhile, Tom had left the room, and was rushing down the stairs, followed by Fanny. Having secured my desk, I ran to catch them, and Mary Ann came scampering after. All three escaped me, and ran out of the house into the garden, where they plunged about in the snow, shouting and screaming in exultant glee.
What must I do? If I followed them, I should probably be unable to capture one, and only drive them farther away; if I did not, how was I to get them in? And what would their parents think of me, if they saw or heard the children rioting, hatless, bonnetless, gloveless, and bootless, in the deep soft snow?
In this example, we need to use implied details to understand the tone of Miss Grey toward the parents of the children. Though we don’t have any evidence of actual interactions with the parents, we know she is worried about what they might think if they thought she had done something wrong. This aligns nicely with our correct answer, “apprehensive.” Though the overall tone of the passage is frustrated, we do not have any evidence that Miss Grey feels this way about the parents. Nor do we know that she is either angry or appreciative. Be careful to pay close attention to detail here! We’re looking for how Miss Grey feels about the parents - not the children themselves - and several convincing wrong answers in this example attempt to shift our attention away from the question that’s been asked and toward the overall tone of the passage indicated by Miss Grey’s retelling of her interactions with the children.
In this example, we need to use implied details to understand the tone of Miss Grey toward the parents of the children. Though we don’t have any evidence of actual interactions with the parents, we know she is worried about what they might think if they thought she had done something wrong. This aligns nicely with our correct answer, “apprehensive.” Though the overall tone of the passage is frustrated, we do not have any evidence that Miss Grey feels this way about the parents. Nor do we know that she is either angry or appreciative. Be careful to pay close attention to detail here! We’re looking for how Miss Grey feels about the parents - not the children themselves - and several convincing wrong answers in this example attempt to shift our attention away from the question that’s been asked and toward the overall tone of the passage indicated by Miss Grey’s retelling of her interactions with the children.
Compare your answer with the correct one above
It can be concluded from the passage that
This passage is adapted from “Flagship Species and Their Role in the Conservation Movement” (2020)
Until recently, two schools of thought have dominated the field of establishing “flagship” endangered species for marketing and awareness campaigns. These flagship species make up the subset of endangered species conservation experts utilize to elicit public support - both financial and legal - for fauna conservation as a whole.
The first concerns how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species, commonly termed its “public awareness.” This school of thought was built on the foundation that if an individual recognizes a species from prior knowledge, cultural context, or previous conservational and educational encounters (in a zoo environment or classroom setting, for instance) that individual would be more likely to note and respond to the severity of its endangered status. However, recently emerging flagship species such as the pangolin have challenged the singularity of this factor.
Alongside public awareness, conservation experts have long considered a factor they refer to as a “keystone species” designation in the flagstone selection process. Keystone species are those species that play an especially vital role in their respective habitats or ecosystems. While this metric is invaluable to the environmentalists in charge of designating funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.
Recent scholarship has questioned both the singularity and the extent to which the above classifications impact the decision making of the general public. Though more complicated to measure, a third designation, known as a species’ “charisma,” is now the yardstick by which most flagship species are formally classified. Addressing the charisma of a species involves establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics. This process has been understandably criticized by some for its costs and failure to incorporate the severity of an endangered species’ status into designation, but its impact on the public has been irrefutable. While keystone and public awareness designations are still often applied in the field because of their practicality and comparative simplicity, charisma is now commonly accepted as the most accurate metric with which to judge a species’ flagship potential.
It can be concluded from the passage that
This passage is adapted from “Flagship Species and Their Role in the Conservation Movement” (2020)
Until recently, two schools of thought have dominated the field of establishing “flagship” endangered species for marketing and awareness campaigns. These flagship species make up the subset of endangered species conservation experts utilize to elicit public support - both financial and legal - for fauna conservation as a whole.
The first concerns how recognizable the general public, the audience of most large-scale funding campaigns, finds a particular species, commonly termed its “public awareness.” This school of thought was built on the foundation that if an individual recognizes a species from prior knowledge, cultural context, or previous conservational and educational encounters (in a zoo environment or classroom setting, for instance) that individual would be more likely to note and respond to the severity of its endangered status. However, recently emerging flagship species such as the pangolin have challenged the singularity of this factor.
Alongside public awareness, conservation experts have long considered a factor they refer to as a “keystone species” designation in the flagstone selection process. Keystone species are those species that play an especially vital role in their respective habitats or ecosystems. While this metric is invaluable to the environmentalists in charge of designating funds received, recent data has expressed the more minor role a keystone species designation seems to play in the motivations of the public.
Recent scholarship has questioned both the singularity and the extent to which the above classifications impact the decision making of the general public. Though more complicated to measure, a third designation, known as a species’ “charisma,” is now the yardstick by which most flagship species are formally classified. Addressing the charisma of a species involves establishing and collecting data concerning its ecological (interactions with humans/the environments of humans), aesthetic (appealing to human emotions through physical appearance and immediately related behaviors), and corporeal (affection and socialization with humans over the short- and long-terms) characteristics. This process has been understandably criticized by some for its costs and failure to incorporate the severity of an endangered species’ status into designation, but its impact on the public has been irrefutable. While keystone and public awareness designations are still often applied in the field because of their practicality and comparative simplicity, charisma is now commonly accepted as the most accurate metric with which to judge a species’ flagship potential.
Here, we’re looking for what can be concluded from the passage. We do not know based on the passage that ecosystems are limited to only one keystone species, or that humans cannot encounter animals for educational purposes anywhere other than zoos and classrooms. We are also not told that public awareness and keystone designations have no impact on the public, rather, that “Recent studies by conservationists have questioned both the singularity and the extent to which the above classifications impact the decision making of the general public.” We are however told in paragraph one that the public can help endangered species when the paragraph cites “public support - both financial and legal - for fauna conservation as a whole.”
Here, we’re looking for what can be concluded from the passage. We do not know based on the passage that ecosystems are limited to only one keystone species, or that humans cannot encounter animals for educational purposes anywhere other than zoos and classrooms. We are also not told that public awareness and keystone designations have no impact on the public, rather, that “Recent studies by conservationists have questioned both the singularity and the extent to which the above classifications impact the decision making of the general public.” We are however told in paragraph one that the public can help endangered species when the paragraph cites “public support - both financial and legal - for fauna conservation as a whole.”
Compare your answer with the correct one above
Adapted from The Evolutionist at Large by Grant Allen (1881)
I am engaged in watching a brigade of ants out on foraging duty, and intent on securing for the nest three whole segments of a deceased earthworm. They look for all the world like those busy companies one sees in the Egyptian wall paintings, dragging home a huge granite colossus by sheer force of bone and sinew. Every muscle in their tiny bodies is strained to the utmost as they pry themselves laboriously against the great boulders that strew the path, and that are known to our Brobdingnagian intelligence as grains of sand. Besides the workers themselves, a whole battalion of stragglers runs to and fro upon the broad line that leads to the headquarters of the community. The province of these stragglers, who seem so busy doing nothing, probably consists in keeping communications open, and encouraging the sturdy pullers by occasional relays of fresh workmen. I often wish that I could for a while get inside those tiny brains, and see, or rather smell, the world as ants do. For there can be little doubt that to these brave little carnivores here the universe is chiefly known as a collective bundle of odors, simultaneous or consecutive. As our world is mainly a world of visible objects, theirs, I believe, is mainly a world of olfactible things.
In the head of every one of these little creatures is something that we may fairly call a brain. Of course most insects have no real brains; the nerve-substance in their heads is a mere collection of ill-arranged ganglia, directly connected with their organs of sense. Whatever man may be, an earwig at least is a conscious, or rather a semi-conscious, automaton. He has just a few knots of nerve cells in his little pate, each of which leads straight from his dim eye or his vague ear or his indefinite organs of taste; and his muscles obey the promptings of external sensations without possibility of hesitation or consideration, as mechanically as the valve of a steam engine obeys the governor balls. The poor soul's intellect is wholly deficient, and the senses alone make up all that there is of him, subjectively considered. But it is not so with the highest insects. They have something that truly answers to the real brain of men, apes, and dogs, to the cerebral hemispheres and the cerebellum that are superadded in us mammals upon the simple sense-centers of lower creatures. Besides the eye, with its optic nerve and optic perceptive organs—besides the ear, with its similar mechanism—we mammalian lords of creation have a higher and more genuine brain, that collects and compares the information given to the senses, and sends down the appropriate messages to the muscles accordingly. Now, bees and flies and ants have got much the same sort of arrangement, on a smaller scale, within their tiny heads. On top of the little knots that do duty as nerve centers for their eyes and mouths, stand two stalked bits of nervous matter, whose duty is analogous to that of our own brains. And that is why these three sorts of insects think and reason so much more intellectually than beetles or butterflies, and why the larger part of them have organized their domestic arrangements on such an excellent cooperative plan.
We know well enough what forms the main material of thought with bees and flies, and that is visible objects. For you must think about something if you think at all; and you can hardly imagine a contemplative blow-fly setting itself down to reflect, like a Hindu devotee, on the syllable Om, or on the oneness of existence. Abstract ideas are not likely to play a large part in apian consciousness. A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us. The information that it gets through its eye, coupled with other ideas derived from touch, smell, and taste, no doubt makes up the main thinkable and knowable universe as it reveals itself to the apian intelligence. To ourselves and to bees alike the world is, on the whole, a colored picture, with the notions of distance and solidity thrown in by touch and muscular effort; but sight undoubtedly plays the first part in forming our total conception of things generally.
The third paragraph establishes all of the following EXCEPT __________.
Adapted from The Evolutionist at Large by Grant Allen (1881)
I am engaged in watching a brigade of ants out on foraging duty, and intent on securing for the nest three whole segments of a deceased earthworm. They look for all the world like those busy companies one sees in the Egyptian wall paintings, dragging home a huge granite colossus by sheer force of bone and sinew. Every muscle in their tiny bodies is strained to the utmost as they pry themselves laboriously against the great boulders that strew the path, and that are known to our Brobdingnagian intelligence as grains of sand. Besides the workers themselves, a whole battalion of stragglers runs to and fro upon the broad line that leads to the headquarters of the community. The province of these stragglers, who seem so busy doing nothing, probably consists in keeping communications open, and encouraging the sturdy pullers by occasional relays of fresh workmen. I often wish that I could for a while get inside those tiny brains, and see, or rather smell, the world as ants do. For there can be little doubt that to these brave little carnivores here the universe is chiefly known as a collective bundle of odors, simultaneous or consecutive. As our world is mainly a world of visible objects, theirs, I believe, is mainly a world of olfactible things.
In the head of every one of these little creatures is something that we may fairly call a brain. Of course most insects have no real brains; the nerve-substance in their heads is a mere collection of ill-arranged ganglia, directly connected with their organs of sense. Whatever man may be, an earwig at least is a conscious, or rather a semi-conscious, automaton. He has just a few knots of nerve cells in his little pate, each of which leads straight from his dim eye or his vague ear or his indefinite organs of taste; and his muscles obey the promptings of external sensations without possibility of hesitation or consideration, as mechanically as the valve of a steam engine obeys the governor balls. The poor soul's intellect is wholly deficient, and the senses alone make up all that there is of him, subjectively considered. But it is not so with the highest insects. They have something that truly answers to the real brain of men, apes, and dogs, to the cerebral hemispheres and the cerebellum that are superadded in us mammals upon the simple sense-centers of lower creatures. Besides the eye, with its optic nerve and optic perceptive organs—besides the ear, with its similar mechanism—we mammalian lords of creation have a higher and more genuine brain, that collects and compares the information given to the senses, and sends down the appropriate messages to the muscles accordingly. Now, bees and flies and ants have got much the same sort of arrangement, on a smaller scale, within their tiny heads. On top of the little knots that do duty as nerve centers for their eyes and mouths, stand two stalked bits of nervous matter, whose duty is analogous to that of our own brains. And that is why these three sorts of insects think and reason so much more intellectually than beetles or butterflies, and why the larger part of them have organized their domestic arrangements on such an excellent cooperative plan.
We know well enough what forms the main material of thought with bees and flies, and that is visible objects. For you must think about something if you think at all; and you can hardly imagine a contemplative blow-fly setting itself down to reflect, like a Hindu devotee, on the syllable Om, or on the oneness of existence. Abstract ideas are not likely to play a large part in apian consciousness. A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us. The information that it gets through its eye, coupled with other ideas derived from touch, smell, and taste, no doubt makes up the main thinkable and knowable universe as it reveals itself to the apian intelligence. To ourselves and to bees alike the world is, on the whole, a colored picture, with the notions of distance and solidity thrown in by touch and muscular effort; but sight undoubtedly plays the first part in forming our total conception of things generally.
The third paragraph establishes all of the following EXCEPT __________.
According to the third paragraph, Lubbock has given us proof that bees can see colour and shapes through his experiments: “A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us.” The experiments have shown this, therefore there is proof, which makes the statement that he has proved nothing false.
According to the third paragraph, Lubbock has given us proof that bees can see colour and shapes through his experiments: “A bee has a very perfect eye, and with this eye it can see not only form, but also color, as Sir John Lubbock's experiments have shown us.” The experiments have shown this, therefore there is proof, which makes the statement that he has proved nothing false.
Compare your answer with the correct one above
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
The last paragraph establishes all of the following EXCEPT __________.
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
The last paragraph establishes all of the following EXCEPT __________.
The author states that overall the sixty-four flowers which were given more pollen produced sixty-one capsules, of which four were not used in the calculation of averages due to their contents being of poor quality. All other options are directly supported by the context of the final paragraph. So "overall, the over-pollinated seeds produced sixty-five capsules" is our correct answer.
The author states that overall the sixty-four flowers which were given more pollen produced sixty-one capsules, of which four were not used in the calculation of averages due to their contents being of poor quality. All other options are directly supported by the context of the final paragraph. So "overall, the over-pollinated seeds produced sixty-five capsules" is our correct answer.
Compare your answer with the correct one above
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
The fifth paragraph establishes all of the following EXCEPT __________.
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
The fifth paragraph establishes all of the following EXCEPT __________.
The author cites four people in the paragraph by name: Castanheda, Goes, Osorio and Manuel de Mesquita Perestrello. The first three were on the voyage of Vasco da Gama. The author also continues his citation of a source from the previous paragraph, but including this citation, there are still only five, unless Vasco da Gama was miscounted. So, "the author cites six people who described the penguins in this paragraph" is our correct answer.
The author cites four people in the paragraph by name: Castanheda, Goes, Osorio and Manuel de Mesquita Perestrello. The first three were on the voyage of Vasco da Gama. The author also continues his citation of a source from the previous paragraph, but including this citation, there are still only five, unless Vasco da Gama was miscounted. So, "the author cites six people who described the penguins in this paragraph" is our correct answer.
Compare your answer with the correct one above
Natural Science: Darwin and his influence by Joseph Ritchie
In this passage, “selection” refers to traits that are selected for and passed on to later generations, and “species” refers to organisms that share a common ancestor and can produce viable offspring with one another.
Early in the nineteenth century, scientists sought to understand the differences in the earth’s flora and fauna from their archeological ancestors. The prevailing view at the time was that the differences between current and previous species were unremarkable deviations from their Platonic ideal forms. This theory hinged upon the ideals of the religious-based “created kinds” theory, which state that individuals of today are products of the organisms that were present at the earth’s creation, the result of an intelligent designer. Furthermore, these individuals believed that the differences between organisms could be explained by unseen geological and astrological forces acting on organisms slowly, throughout time. Other scientists also believed that individuals had the ability to change within their lifetimes and pass on traits to their offspring efficiently and quickly through a single generation.
Charles Darwin and other biologists, such as Alfred Wallace, were not greatly influenced by these views and hypotheses. Their propositions stated that species evolve over many generations, due to the selective pressures of their given environments. This evolution could result in the generation of divergent traits, as well as speciation and separation from the original ancestral species. The concept that organisms were not finite or present since creation was very controversial to the scientists of the period. Some saw such an idea as unsupportable, while others perceived it as heretical and fanatical.
Darwin set out to find support for his theory through his work, On the Origins of Species by Means of Natural Selection. He was influenced by archeological discoveries of species, which appeared to have vastly different physiological appearances from present-day organisms. Darwin decided to sail around the world on a Royal Navy ship named the HMS Beagle. During his travels, he was taken to the Pacific islands of the Galapagos archipelago. The volcanic islands followed a patterned distribution on either side of the Equator. The landscapes of each island varied, with different observable flora and fauna. Through scientific observations, Darwin noticed subtle variations of finches on different islands. Some finches had large hard beaks, while others had slender beaks. Beaks were differentiated from island to island. After careful study, Darwin noticed that the beaks seemed to match the food source on each island. The large beaks were specialized for breaking open hard-shelled nuts, while the slender beaks were specialized for eating certain fruits that were abundant. Darwin hypothesized that an ancestral species of finch landed on the islands, and that over generations they became adapted to the locally abundant food sources.
Darwin compiled multiple instances of natural selection and incorporated discoveries made by archeologists and physiologists. He surmised that species evolve over time due to the selective pressures of their respective habitats. These events occur slowly over many generations. Each species selects for advantageous traits among its members. Over time, traits selected as advantageous by environmental pressures and stressors become commonplace in the species. This niche-forming process specializes species by rewarding those with traits most suitable for reproductive success. These traits may progress into speciation of the original species, which results in the eventual development of an entirely new species. Darwin’s theory was met with opposition at the time of its publication, and the theory of evolution remains a controversial topic in several arenas of debate.
Which of the following statements about the Galapagos is not supported by the passage?
Natural Science: Darwin and his influence by Joseph Ritchie
In this passage, “selection” refers to traits that are selected for and passed on to later generations, and “species” refers to organisms that share a common ancestor and can produce viable offspring with one another.
Early in the nineteenth century, scientists sought to understand the differences in the earth’s flora and fauna from their archeological ancestors. The prevailing view at the time was that the differences between current and previous species were unremarkable deviations from their Platonic ideal forms. This theory hinged upon the ideals of the religious-based “created kinds” theory, which state that individuals of today are products of the organisms that were present at the earth’s creation, the result of an intelligent designer. Furthermore, these individuals believed that the differences between organisms could be explained by unseen geological and astrological forces acting on organisms slowly, throughout time. Other scientists also believed that individuals had the ability to change within their lifetimes and pass on traits to their offspring efficiently and quickly through a single generation.
Charles Darwin and other biologists, such as Alfred Wallace, were not greatly influenced by these views and hypotheses. Their propositions stated that species evolve over many generations, due to the selective pressures of their given environments. This evolution could result in the generation of divergent traits, as well as speciation and separation from the original ancestral species. The concept that organisms were not finite or present since creation was very controversial to the scientists of the period. Some saw such an idea as unsupportable, while others perceived it as heretical and fanatical.
Darwin set out to find support for his theory through his work, On the Origins of Species by Means of Natural Selection. He was influenced by archeological discoveries of species, which appeared to have vastly different physiological appearances from present-day organisms. Darwin decided to sail around the world on a Royal Navy ship named the HMS Beagle. During his travels, he was taken to the Pacific islands of the Galapagos archipelago. The volcanic islands followed a patterned distribution on either side of the Equator. The landscapes of each island varied, with different observable flora and fauna. Through scientific observations, Darwin noticed subtle variations of finches on different islands. Some finches had large hard beaks, while others had slender beaks. Beaks were differentiated from island to island. After careful study, Darwin noticed that the beaks seemed to match the food source on each island. The large beaks were specialized for breaking open hard-shelled nuts, while the slender beaks were specialized for eating certain fruits that were abundant. Darwin hypothesized that an ancestral species of finch landed on the islands, and that over generations they became adapted to the locally abundant food sources.
Darwin compiled multiple instances of natural selection and incorporated discoveries made by archeologists and physiologists. He surmised that species evolve over time due to the selective pressures of their respective habitats. These events occur slowly over many generations. Each species selects for advantageous traits among its members. Over time, traits selected as advantageous by environmental pressures and stressors become commonplace in the species. This niche-forming process specializes species by rewarding those with traits most suitable for reproductive success. These traits may progress into speciation of the original species, which results in the eventual development of an entirely new species. Darwin’s theory was met with opposition at the time of its publication, and the theory of evolution remains a controversial topic in several arenas of debate.
Which of the following statements about the Galapagos is not supported by the passage?
"Located in the Atlantic Ocean" is our correct answer.
The passage specifically states that the Galapagos are "Pacific islands," meaning that the location "the Atlantic Ocean" is not supported by the passage. All other answers are directly supported by the passage. Paragraph three states that "The volcanic islands followed a patterned distribution on either side of the Equator. The landscapes of each island varied, with different observable flora and fauna," supporting both "characterized by a volcano," and "home to diverse flora and fauna." One sentence earlier, the Galapagos were reference by stating that "During his travels, he was taken to the Pacific islands of the Galapagos archipelago." This means we can also eliminate "classified as an archipelago."
"Located in the Atlantic Ocean" is our correct answer.
The passage specifically states that the Galapagos are "Pacific islands," meaning that the location "the Atlantic Ocean" is not supported by the passage. All other answers are directly supported by the passage. Paragraph three states that "The volcanic islands followed a patterned distribution on either side of the Equator. The landscapes of each island varied, with different observable flora and fauna," supporting both "characterized by a volcano," and "home to diverse flora and fauna." One sentence earlier, the Galapagos were reference by stating that "During his travels, he was taken to the Pacific islands of the Galapagos archipelago." This means we can also eliminate "classified as an archipelago."
Compare your answer with the correct one above
Adapted from Common Diseases of Farm Animals by R. A. Craig (1916, 2nd ed.)
The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the feces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.
The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.
The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.
SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.
Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.
The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.
The first paragraph establishes all of the following about the common bot-fly of the horse EXCEPT that __________.
Adapted from Common Diseases of Farm Animals by R. A. Craig (1916, 2nd ed.)
The common bot-fly of the horse (G. equi) has a heavy, hairy body. Its color is brown, with dark and yellowish spots. The female fly can be seen during the warm weather, hovering around the horse, and darting toward the animal for the purpose of depositing the egg. The color of the egg is yellow, and it adheres firmly to the hair. It hatches in from two to four weeks, and the larva reaches the mouth through the animal licking the part. From the mouth, it passes to the stomach, where it attaches itself to the gastric mucous membrane. Here it remains until fully developed, when it becomes detached and is passed out with the feces. The third stage is passed in the ground. This takes place in the spring and early summer and lasts for several weeks, when it finally emerges a mature fly.
The bot-fly of the ox (H. lineata) is dark in color and about the size of a honey-bee. On warm days, the female may be seen depositing eggs on the body of the animal, especially in the region of the heels. This seems to greatly annoy the animal, and it is not uncommon for cattle to become stampeded. The egg reaches the mouth through the animal licking the part. The saliva dissolves the shell of the egg and the larva is freed. It then migrates from the gullet, wanders about in the tissue until finally it may reach a point beneath the skin of the back. Here the larva matures and forms the well-known swelling or warble. In the spring of the year it works out through the skin. The next stage is spent in the ground. The pupa state lasts several weeks, when the mature fly issues forth.
The bot-fly of sheep (O. ovis) resembles an overgrown house-fly. Its general color is brown, and it is apparently lazy, flying about very little. This bot-fly makes its appearance when the warm weather begins, and deposits live larvae in the nostrils of sheep. This act is greatly feared by the animals, as shown by their crowding together and holding the head down. The larva works up the nasal cavities and reaches the sinuses of the head, where it becomes attached to the lining mucous membrane. In the spring, when fully developed, it passes out through the nasal cavities and nostrils, drops to the ground, buries itself, and in from four to six weeks develops into the mature fly.
SYMPTOMS OF BOT-FLY DISEASES.—The larvae of the bot-fly of the horse do not cause characteristic symptoms of disease. Work horses that are groomed daily are not hosts for a large number of "bots," but young and old horses that are kept in a pasture or lot and seldom groomed may become unthrifty and "pot bellied," or show symptoms of indigestion.
Cattle suffer much pain from the development of the larva of the H. lineata. During the spring of the year, the pain resulting from the presence of the larvae beneath the skin and the penetration of the skin is manifested by excitement and running about. Besides the loss in milk and beef production, there is a heavy yearly loss from the damage to hides.
The life of the bot-fly of sheep results in a severe catarrhal inflammation of the mucous membrane lining the sinuses of the head, and a discharge of a heavy, pus-like material from the nostrils. The irritation produced by the larvae may be so serious at times as to result in nervous symptoms and death.
The first paragraph establishes all of the following about the common bot-fly of the horse EXCEPT that __________.
We know that it does not take six weeks to hatch as the paragraph states that: “It hatches in from two to four weeks.” The sheep bot fly takes six weeks to transform into its fly stage but this is discussed in the third, not the first, paragraph.
We know that it does not take six weeks to hatch as the paragraph states that: “It hatches in from two to four weeks.” The sheep bot fly takes six weeks to transform into its fly stage but this is discussed in the third, not the first, paragraph.
Compare your answer with the correct one above
Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)
Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.
I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.
Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of T inea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.
This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."
The first paragraph establishes all of the following EXCEPT __________.
Adapted from A Practical Treatise on the Hive and Honey-Bee by Lorenzo Lorraine Langstroth (1857 ed.)
Of all the numerous enemies of the honey-bee, the Bee-Moth (Tinea mellonella), in climates of hot summers, is by far the most to be dreaded. So widespread and fatal have been its ravages in this country that thousands have abandoned the cultivation of bees in despair, and in districts which once produced abundant supplies of the purest honey, bee-keeping has gradually dwindled down into a very insignificant pursuit. Contrivances almost without number have been devised to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn at all the so-called "moth-proof" hives, and turning many of the ingenious fixtures designed to entrap or exclude it into actual aids and comforts in its nefarious designs.
I should feel but little confidence in being able to reinstate bee-keeping in our country into a certain and profitable pursuit if I could not show the apiarian in what way he can safely bid defiance to the pestiferous assaults of this, his most implacable enemy. I have patiently studied its habits for years, and I am at length able to announce a system of management founded upon the peculiar construction of my hives, which will enable the careful bee-keeper to protect his colonies against the monster. The bee-moth infects our apiaries, just as weeds take possession of a fertile soil. Before explaining the means upon which I rely to circumvent the moth, I will first give a brief description of its habits.
Swammerdam, towards the close of the seventeenth century, gave a very accurate description of this insect, which was then called by the very expressive name of the "bee-wolf." He has furnished good drawings of it, in all its changes, from the worm to the perfect moth, together with the peculiar webs or galleries that it constructs and from which the name of T inea galleria or “gallery moth” has been given to it by some entomologists. He failed, however, to discriminate between the male and female, which, because they differ so much in size and appearance, he supposed to be two different species of the wax-moth. It seems to have been a great pest in his time, and even Virgil speaks of the "dirum tineæ genus," the dreadful offspring of the moth; that is the worm.
This destroyer usually makes its appearance about the hives in April or May, the time of its coming depending upon the warmth of the climate or the forwardness of the season. It is seldom seen on the wing (unless startled from its lurking place about the hive) until towards dark, and is evidently chiefly nocturnal in its habits. In dark cloudy days, however, I have noticed it on the wing long before sunset, and if several such days follow in succession, the female, oppressed with the urgent necessity of laying her eggs, may be seen endeavoring to gain admission to the hives. The female is much larger than the male, and "her color is deeper and more inclining to a darkish gray, with small spots or blackish streaks on the interior edge of her upper wings." The color of the male inclines more to a light gray; they might easily be mistaken for different species of moths. These insects are surprisingly agile, both on foot and on the wing. The motions of a bee are very slow in comparison. "They are," says Reaumur, "the most nimble-footed creatures that I know." "If the approach to the apiary be observed of a moonlight evening, the moths will be found flying or running round the hives, watching an opportunity to enter, whilst the bees that have to guard the entrances against their intrusion will be seen acting as vigilant sentinels, performing continual rounds near this important post, extending their antenna to the utmost, and moving them to the right and left alternately. Woe to the unfortunate moth that comes within their reach!" "It is curious," says Huber, "to observe how artfully the moth knows how to profit, to the disadvantage of the bees, which require much light for seeing objects; and the precautions taken by the latter in reconnoitering and expelling so dangerous an enemy."
The first paragraph establishes all of the following EXCEPT __________.
The author does not believe the devices created to stop the bee-moth work, as he states in the first paragraph, “Contrivances almost without number, have been devised, to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn, at all the so-called 'moth-proof' hives, and turning many of the ingenious fixtures designed to entrap or exclude it, into actual aids and comforts in its nefarious designs.” So, instead of being kept out of the beehives or killed by the traps or preventative measures, the moth instead uses them to get to the hive.
The author does not believe the devices created to stop the bee-moth work, as he states in the first paragraph, “Contrivances almost without number, have been devised, to defend the bees against this invidious foe, but still it continues its desolating inroads, almost unchecked, laughing as it were to scorn, at all the so-called 'moth-proof' hives, and turning many of the ingenious fixtures designed to entrap or exclude it, into actual aids and comforts in its nefarious designs.” So, instead of being kept out of the beehives or killed by the traps or preventative measures, the moth instead uses them to get to the hive.
Compare your answer with the correct one above
"Cacti" by Ami Dave (2013)
Cacti are plants suited to the desert, and we must always keep this factor in mind when growing ornamental cacti in our gardens, for it helps us provide cacti with conditions that allow them to survive and thrive. For example, a cactus should never be watered over its body, as it will start to rot. This is because it is covered with a waxy coating which prevents water loss through evaporation. When one waters the cactus over its body, the waxy coating is washed away and the plant begins to rot. The amount of water that one must supply to the cactus is very much dependent upon the season and upon the climate of the place. During the summer season one should water cacti every four days, whereas in the rainy season, once every fifteen days is quite enough.
Cacti need a minimum of two and a half hours of sunlight per day; however, they should not be kept in the sun all day because they may wrinkle when exposed to too much bright sunlight. Unlike other plants, cacti produce carbon dioxide during the day and oxygen during the night, so they are ideal plants to be kept in bedrooms to freshen up the air at night.
If a cactus is to thrive and prosper, the size of the pot in which it is grown needs to be monitored carefully. The pot should always be a little smaller than the plant itself because it is only when the plant has to struggle to survive that it will thrive. If the pot is too spacious and the plant does not need to struggle, chances are that the cactus will die. Similarly, if a cactus shows no signs of growth, stop watering it. Watering should be resumed only when the plant begins to grow again.
The substrata of a cactus pot is ideally composed of pieces of broken bricks at the bottom, followed by a layer of charcoal above the bricks, and then coarse sand and pebbles above the charcoal. Leaf mould is the best manure.
Grafting cacti is very simple. A very small piece of the cactus plant should be stuck with tape to the plant that needs grafting. The smaller the piece, the easier it is to graft. To reproduce cacti, one has to simply cut off a piece of the cactus, allow it to dry for a few days, and then place it over the cacti substrate. It will automatically develop roots.
It is very easy to differentiate between cacti and other plants that look like cacti. All cacti have fine hair at the base of each thorn. The so-called “thorns” are in fact highly modified leaves which prevent loss of water through transpiration. If one ever gets pricked by cacti thorns, one should take tape, place it over the area where the thorns have penetrated the skin, and then peel it off. All of the thorns will get stuck to the tape and will be removed.
The first paragraph provides all of the following information EXCEPT __________.
"Cacti" by Ami Dave (2013)
Cacti are plants suited to the desert, and we must always keep this factor in mind when growing ornamental cacti in our gardens, for it helps us provide cacti with conditions that allow them to survive and thrive. For example, a cactus should never be watered over its body, as it will start to rot. This is because it is covered with a waxy coating which prevents water loss through evaporation. When one waters the cactus over its body, the waxy coating is washed away and the plant begins to rot. The amount of water that one must supply to the cactus is very much dependent upon the season and upon the climate of the place. During the summer season one should water cacti every four days, whereas in the rainy season, once every fifteen days is quite enough.
Cacti need a minimum of two and a half hours of sunlight per day; however, they should not be kept in the sun all day because they may wrinkle when exposed to too much bright sunlight. Unlike other plants, cacti produce carbon dioxide during the day and oxygen during the night, so they are ideal plants to be kept in bedrooms to freshen up the air at night.
If a cactus is to thrive and prosper, the size of the pot in which it is grown needs to be monitored carefully. The pot should always be a little smaller than the plant itself because it is only when the plant has to struggle to survive that it will thrive. If the pot is too spacious and the plant does not need to struggle, chances are that the cactus will die. Similarly, if a cactus shows no signs of growth, stop watering it. Watering should be resumed only when the plant begins to grow again.
The substrata of a cactus pot is ideally composed of pieces of broken bricks at the bottom, followed by a layer of charcoal above the bricks, and then coarse sand and pebbles above the charcoal. Leaf mould is the best manure.
Grafting cacti is very simple. A very small piece of the cactus plant should be stuck with tape to the plant that needs grafting. The smaller the piece, the easier it is to graft. To reproduce cacti, one has to simply cut off a piece of the cactus, allow it to dry for a few days, and then place it over the cacti substrate. It will automatically develop roots.
It is very easy to differentiate between cacti and other plants that look like cacti. All cacti have fine hair at the base of each thorn. The so-called “thorns” are in fact highly modified leaves which prevent loss of water through transpiration. If one ever gets pricked by cacti thorns, one should take tape, place it over the area where the thorns have penetrated the skin, and then peel it off. All of the thorns will get stuck to the tape and will be removed.
The first paragraph provides all of the following information EXCEPT __________.
The passage states the opposite of the answer choice "it is covered with a waxy coating that prevents water loss through evaporation." The rest of the answer choices are all correct information supported by the first paragraph.
The passage states the opposite of the answer choice "it is covered with a waxy coating that prevents water loss through evaporation." The rest of the answer choices are all correct information supported by the first paragraph.
Compare your answer with the correct one above
"Cacti" by Ami Dave (2013)
Cacti are plants suited to the desert, and we must always keep this factor in mind when growing ornamental cacti in our gardens, for it helps us provide cacti with conditions that allow them to survive and thrive. For example, a cactus should never be watered over its body, as it will start to rot. This is because it is covered with a waxy coating which prevents water loss through evaporation. When one waters the cactus over its body, the waxy coating is washed away and the plant begins to rot. The amount of water that one must supply to the cactus is very much dependent upon the season and upon the climate of the place. During the summer season one should water cacti every four days, whereas in the rainy season, once every fifteen days is quite enough.
Cacti need a minimum of two and a half hours of sunlight per day; however, they should not be kept in the sun all day because they may wrinkle when exposed to too much bright sunlight. Unlike other plants, cacti produce carbon dioxide during the day and oxygen during the night, so they are ideal plants to be kept in bedrooms to freshen up the air at night.
If a cactus is to thrive and prosper, the size of the pot in which it is grown needs to be monitored carefully. The pot should always be a little smaller than the plant itself because it is only when the plant has to struggle to survive that it will thrive. If the pot is too spacious and the plant does not need to struggle, chances are that the cactus will die. Similarly, if a cactus shows no signs of growth, stop watering it. Watering should be resumed only when the plant begins to grow again.
The substrata of a cactus pot is ideally composed of pieces of broken bricks at the bottom, followed by a layer of charcoal above the bricks, and then coarse sand and pebbles above the charcoal. Leaf mould is the best manure.
Grafting cacti is very simple. A very small piece of the cactus plant should be stuck with tape to the plant that needs grafting. The smaller the piece, the easier it is to graft. To reproduce cacti, one has to simply cut off a piece of the cactus, allow it to dry for a few days, and then place it over the cacti substrate. It will automatically develop roots.
It is very easy to differentiate between cacti and other plants that look like cacti. All cacti have fine hair at the base of each thorn. The so-called “thorns” are in fact highly modified leaves which prevent loss of water through transpiration. If one ever gets pricked by cacti thorns, one should take tape, place it over the area where the thorns have penetrated the skin, and then peel it off. All of the thorns will get stuck to the tape and will be removed.
The passage addresses all of the following EXCEPT _______.
"Cacti" by Ami Dave (2013)
Cacti are plants suited to the desert, and we must always keep this factor in mind when growing ornamental cacti in our gardens, for it helps us provide cacti with conditions that allow them to survive and thrive. For example, a cactus should never be watered over its body, as it will start to rot. This is because it is covered with a waxy coating which prevents water loss through evaporation. When one waters the cactus over its body, the waxy coating is washed away and the plant begins to rot. The amount of water that one must supply to the cactus is very much dependent upon the season and upon the climate of the place. During the summer season one should water cacti every four days, whereas in the rainy season, once every fifteen days is quite enough.
Cacti need a minimum of two and a half hours of sunlight per day; however, they should not be kept in the sun all day because they may wrinkle when exposed to too much bright sunlight. Unlike other plants, cacti produce carbon dioxide during the day and oxygen during the night, so they are ideal plants to be kept in bedrooms to freshen up the air at night.
If a cactus is to thrive and prosper, the size of the pot in which it is grown needs to be monitored carefully. The pot should always be a little smaller than the plant itself because it is only when the plant has to struggle to survive that it will thrive. If the pot is too spacious and the plant does not need to struggle, chances are that the cactus will die. Similarly, if a cactus shows no signs of growth, stop watering it. Watering should be resumed only when the plant begins to grow again.
The substrata of a cactus pot is ideally composed of pieces of broken bricks at the bottom, followed by a layer of charcoal above the bricks, and then coarse sand and pebbles above the charcoal. Leaf mould is the best manure.
Grafting cacti is very simple. A very small piece of the cactus plant should be stuck with tape to the plant that needs grafting. The smaller the piece, the easier it is to graft. To reproduce cacti, one has to simply cut off a piece of the cactus, allow it to dry for a few days, and then place it over the cacti substrate. It will automatically develop roots.
It is very easy to differentiate between cacti and other plants that look like cacti. All cacti have fine hair at the base of each thorn. The so-called “thorns” are in fact highly modified leaves which prevent loss of water through transpiration. If one ever gets pricked by cacti thorns, one should take tape, place it over the area where the thorns have penetrated the skin, and then peel it off. All of the thorns will get stuck to the tape and will be removed.
The passage addresses all of the following EXCEPT _______.
The passage addresses that watering the body of the cactus can have harmful effects, and therefore one should water the roots only; however, it does not discuss the biological mechanism behind how the cactus transports water upward to the body (against the force of gravity).
The passage addresses that watering the body of the cactus can have harmful effects, and therefore one should water the roots only; however, it does not discuss the biological mechanism behind how the cactus transports water upward to the body (against the force of gravity).
Compare your answer with the correct one above