ACT Science › How to find conflicting viewpoints in biology
Criminal and deviant acts have plagued society for many years. Scientists have tried to isolate variables and factors of individuals susceptible to these behaviors. The goal of this research is to create models of individuals most likely to commit deviant acts. Prediction of criminal behavior could reduce crime rates on a grand scale. Three scientists express their views on how to model criminal behavior and predict or prevent criminal acts.
Scientist 1
Criminal behavior is the result of prehistoric tendencies that favor aggressive and deviant acts for survival. A study of the corpses of criminals revealed that many exhibited prominent brows, strong upper bodies, large chests and other attributes that lend to a physical model of prediction that classifies criminals as "evolutionary throwbacks."
Scientist 2
Criminal behavior is the result of psychological ills that may be remedied with treatment and hospitalization. Studies have revealed that many criminal men possess an XYY makeup. This means that they contain one extra Y chromosome that results in aggressive, deviant, and criminal behaviors. Further studies have revealed that these genetic abnormalities can alter hormonal secretion and lead to criminally deviant actions and behaviors. Increased serotonin levels can lead to aggressive tendencies while altered dopamine secretion can chemically reward the commitment of deviant acts by stimulating pleasure receptors.
Scientist 3
Criminal behavior is the result of neurological abnormalities that can be studied and mapped. Studies of criminal and non-criminal persons have revealed inconsistencies in brain scans and neurological makeup. These alterations in brain chemistry and function have resulted in the development of sociopathic and narcissistic tendencies. These tendencies often increase probabilities for deviant and violent outbursts. The best way to predict criminal behavior is to utilize neurological scanning and mapping procedures.
A study of mice revealed that males possessing an XYY genotype are far more likely to engage in risky and aggressive behaviors. Which of the scientists would most agree with this evidence?
Scientist 2
Scientist 1
Scientist 3
None of the scientists would agree with this information.
Scientist 2's model is based on hormonal/chemical secretion and genetic structure. The mice in the study possess a XYY genotype. This genotype was referenced in Scientist 2's viewpoint. The other scientists believe criminal acts are either evolutionary or the cause of a defect in brain structure, not chemisry.
In the 17th century, scientists were just beginning to understand the circulatory system of the heart. The two following viewpoints are the two most popular theories of the day.
Scientist I The heart pumps blood through arteries and veins but the two systems are separate. They are similar, just as the senses of smell and taste are when observing food, but ultimately they are two separate systems which perform separate functions. Hot blood flows from the heart, through the arteries, and to the organs which consume the blood much as a human would consume nourishment to survive. Venous blood originates in the liver and follows the veins to the organs where it is similarly consumed.
Scientist II The arteries and veins are two parts of one system. Blood flows from the heart, around the body, and back into the heart through the veins like two sets of one way streets. The idea of two systems, each pumping blood to the organs is unreasonable. If the heart can pump 6 oz of blood per minute, then the liver would have to produce 540 pounds of blood per day. A simple measurement of a human’s weight shows how unlikely that solution is. The single circulatory system is far superior as it explains the function of the heart, the arteries, and the veins clearly.
Why does Scientist I compare the arteries and veins to smell and taste?
To illustrate another example of systems that are linked but are not the same.
Because blood has a very distinct odor and taste.
A person with liver issues will produce blood that tastes and smells different.
The senses of taste and smell are the strongest.
The scientist is trying to make a comparison that the reader will already have experience with, as he is suggesting that the two systems are similar and yet different.
Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.
Scientist 1
During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.
Scientist 2
During waking hours, it is true that the body utilizes large amounts of energy; however, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply to avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity, during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.
Scientist 1’s theory would be most weakened if which of the following were true?
Sharks continue to move constantly while sleeping.
Some herbivores are diurnal, while others are nocturnal.
Desert animals often spend long periods sleeping during the day.
When deprived of sleep, chimpanzees require more food.
Bees sleep less during spring, when food is abundant.
The answer is "Sharks continue to move constantly while sleeping" because Scientist 1 argues that one reason we sleep is because moving around at night wastes energy. Thus, we sleep to conserve energy. If sharks expend energy even while sleeping, this would contradict Scientist 1.
When deprived of sleep, chimpanzees would expend more energy at night and require more, not less, food. During spring, when food for bees is abundant, the bees would be able to gain more energy and sleep less, not more.
Criminal and deviant acts have plagued society for many years. Scientists have tried to isolate variables and factors of individuals susceptible to these behaviors. The goal of this research is to create models of individuals most likely to commit deviant acts. Prediction of criminal behavior could reduce crime rates on a grand scale. Three scientists express their views on how to model criminal behavior and predict or prevent criminal acts.
Scientist 1
Criminal behavior is the result of prehistoric tendencies that favor aggressive and deviant acts for survival. A study of the corpses of criminals revealed that many exhibited prominent brows, strong upper bodies, large chests and other attributes that lend to a physical model of prediction that classifies criminals as "evolutionary throwbacks."
Scientist 2
Criminal behavior is the result of psychological ills that may be remedied with treatment and hospitalization. Studies have revealed that many criminal men possess an XYY makeup. This means that they contain one extra Y chromosome that results in aggressive, deviant, and criminal behaviors. Further studies have revealed that these genetic abnormalities can alter hormonal secretion and lead to criminally deviant actions and behaviors. Increased serotonin levels can lead to aggressive tendencies while altered dopamine secretion can chemically reward the commitment of deviant acts by stimulating pleasure receptors.
Scientist 3
Criminal behavior is the result of neurological abnormalities that can be studied and mapped. Studies of criminal and non-criminal persons have revealed inconsistencies in brain scans and neurological makeup. These alterations in brain chemistry and function have resulted in the development of sociopathic and narcissistic tendencies. These tendencies often increase probabilities for deviant and violent outbursts. The best way to predict criminal behavior is to utilize neurological scanning and mapping procedures.
A study of mice revealed that males possessing an XYY genotype are far more likely to engage in risky and aggressive behaviors. Which of the scientists would most agree with this evidence?
Scientist 2
Scientist 1
Scientist 3
None of the scientists would agree with this information.
Scientist 2's model is based on hormonal/chemical secretion and genetic structure. The mice in the study possess a XYY genotype. This genotype was referenced in Scientist 2's viewpoint. The other scientists believe criminal acts are either evolutionary or the cause of a defect in brain structure, not chemisry.
In the 17th century, scientists were just beginning to understand the circulatory system of the heart. The two following viewpoints are the two most popular theories of the day.
Scientist I The heart pumps blood through arteries and veins but the two systems are separate. They are similar, just as the senses of smell and taste are when observing food, but ultimately they are two separate systems which perform separate functions. Hot blood flows from the heart, through the arteries, and to the organs which consume the blood much as a human would consume nourishment to survive. Venous blood originates in the liver and follows the veins to the organs where it is similarly consumed.
Scientist II The arteries and veins are two parts of one system. Blood flows from the heart, around the body, and back into the heart through the veins like two sets of one way streets. The idea of two systems, each pumping blood to the organs is unreasonable. If the heart can pump 6 oz of blood per minute, then the liver would have to produce 540 pounds of blood per day. A simple measurement of a human’s weight shows how unlikely that solution is. The single circulatory system is far superior as it explains the function of the heart, the arteries, and the veins clearly.
Why does Scientist I compare the arteries and veins to smell and taste?
To illustrate another example of systems that are linked but are not the same.
Because blood has a very distinct odor and taste.
A person with liver issues will produce blood that tastes and smells different.
The senses of taste and smell are the strongest.
The scientist is trying to make a comparison that the reader will already have experience with, as he is suggesting that the two systems are similar and yet different.
Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.
Scientist 1
During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.
Scientist 2
During waking hours, it is true that the body utilizes large amounts of energy; however, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply to avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity, during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.
Scientist 1’s theory would be most weakened if which of the following were true?
Sharks continue to move constantly while sleeping.
Some herbivores are diurnal, while others are nocturnal.
Desert animals often spend long periods sleeping during the day.
When deprived of sleep, chimpanzees require more food.
Bees sleep less during spring, when food is abundant.
The answer is "Sharks continue to move constantly while sleeping" because Scientist 1 argues that one reason we sleep is because moving around at night wastes energy. Thus, we sleep to conserve energy. If sharks expend energy even while sleeping, this would contradict Scientist 1.
When deprived of sleep, chimpanzees would expend more energy at night and require more, not less, food. During spring, when food for bees is abundant, the bees would be able to gain more energy and sleep less, not more.
Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Yet, despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.
Scientist 1
During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.
Scientist 2
During waking hours, it is true that the body utilizes large amounts of energy. However, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.
Which of the following best describes how the scientists view the role of sleep?
Scientist 1: conserve energy; Scientist 2: restore the body
Scientist 1: conserve energy; Scientist 2: resource availability
Scientist 1: regenerate biomolecules; Scientist 2: restore the body
Scientist 1: restore the body; Scientist 2: regenerate biomolecules
Scientist 1: eliminate wastes; Scientist 2: restore the body
Scientist 1's theory entirely revolves around energy conservation: "During periods of sleep, animals are able to conserve energy." This should immediately eliminate any answer choices in which Scientist 1 focuses on something else.
Scientist 2's theory talks about two topics: restoring biomolecules and repairing damage. "Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life." The essence of these two components can be combined in the concept of restoring the body.
Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Yet, despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.
Scientist 1
During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.
Scientist 2
During waking hours, it is true that the body utilizes large amounts of energy. However, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.
Which of the following best describes how the scientists view the role of sleep?
Scientist 1: conserve energy; Scientist 2: restore the body
Scientist 1: conserve energy; Scientist 2: resource availability
Scientist 1: regenerate biomolecules; Scientist 2: restore the body
Scientist 1: restore the body; Scientist 2: regenerate biomolecules
Scientist 1: eliminate wastes; Scientist 2: restore the body
Scientist 1's theory entirely revolves around energy conservation: "During periods of sleep, animals are able to conserve energy." This should immediately eliminate any answer choices in which Scientist 1 focuses on something else.
Scientist 2's theory talks about two topics: restoring biomolecules and repairing damage. "Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life." The essence of these two components can be combined in the concept of restoring the body.
Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Yet, despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.
Scientist 1
During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.
Scientist 2
During waking hours, it is true that the body utilizes large amounts of energy. However, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.
The scientists agree on which of the following principles:
Animals use large amounts of energy while awake.
Animals accumulate biological damage while awake.
Animals spend the most time searching for food while awake.
Animals will die more easily if they do not sleep.
Animals have evolved the need for sleep based on their diet.
Each of these answer choices is contained somewhere within the passage; however, most represent the viewpoint of only one scientist. Both scientists agree that animals use large amounts of energy while awake. Scientist 1 bases their theory around this concept, claiming that animals use energy while awake to search for food. Scientist 2 responds by stating "During waking hours, it is true that the body utilizes large amounts of energy. However . . ."
Sleep plays a vital role in defining the daily activities of virtually all animals. During periods of sleep, the parasympathetic nervous system becomes active and induces a relaxed state in response to increased levels of the hormone melatonin. Yet, despite its ubiquity in the animal kingdom, the purpose of sleep and its role in our daily lives has been disputed by scientists. Two scientists discuss their theories about the purpose of sleep.
Scientist 1
During periods of sleep, animals are able to conserve energy that they would otherwise be spending on unnecessary activity. If an animal’s primary food source is most abundant during daylight, it is a waste of precious energy to be moving about at night. For example, many herbivores, such as squirrels, are diurnal (sleep during the night) because their food source is available during the day, while many insectivores, such as bats, are nocturnal (sleep during the day) because their food source is available during the night. Food sources, as an animal’s most valuable resource, dictate their sleep cycles. Many animal traits observable today evolved as a result of the supply and demand of food in their natural habitat.
Scientist 2
During waking hours, it is true that the body utilizes large amounts of energy. However, the role of sleep is to restore biological products that were utilized during periods of wakefulness, rather than simply avoid utilizing energy in the first place. Many types of biological molecules, such as hormones, are released throughout the body while an animal is active. Sleep serves as a period of inactivity during which the body can manufacture and store a supply of these molecules for future use during the next period of activity. Furthermore, sleep allows the body to repair cellular damages that has accumulated during waking hours. Experimental evidence shows that when animals are deprived of sleep, their immune system quickly weakens and death rates increase. Sleep is necessary for animals to prevent accumulation of damage and to regenerate crucial biomolecules for daily life.
The scientists agree on which of the following principles:
Animals use large amounts of energy while awake.
Animals accumulate biological damage while awake.
Animals spend the most time searching for food while awake.
Animals will die more easily if they do not sleep.
Animals have evolved the need for sleep based on their diet.
Each of these answer choices is contained somewhere within the passage; however, most represent the viewpoint of only one scientist. Both scientists agree that animals use large amounts of energy while awake. Scientist 1 bases their theory around this concept, claiming that animals use energy while awake to search for food. Scientist 2 responds by stating "During waking hours, it is true that the body utilizes large amounts of energy. However . . ."