Phospholipids - Biochemistry
Card 0 of 20
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Tap to see back →
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
Tap to see back →
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
Which of the following is false about phospholipids?
Which of the following is false about phospholipids?
Tap to see back →
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Tap to see back →
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Which of the following is not a component of a typical phospholipid?
Which of the following is not a component of a typical phospholipid?
Tap to see back →
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Tap to see back →
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
Tap to see back →
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
Which of the following is false about phospholipids?
Which of the following is false about phospholipids?
Tap to see back →
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Tap to see back →
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Which of the following is not a component of a typical phospholipid?
Which of the following is not a component of a typical phospholipid?
Tap to see back →
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Tap to see back →
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
Tap to see back →
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
Which of the following is false about phospholipids?
Which of the following is false about phospholipids?
Tap to see back →
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Tap to see back →
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Which of the following is not a component of a typical phospholipid?
Which of the following is not a component of a typical phospholipid?
Tap to see back →
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Which component of a phospholipid imparts a charge upon the macromolecule and therefore makes the head hydrophilic?
Tap to see back →
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
Phospholipids are amphipathic, meaning they have an end that is hydrophobic (the fatty acid tail) and an end that is hydrophilic (the head). Phosphate groups have a negative charge, thus attracting them to water, and the presence of a phosphate group at the head of a phospholipid makes that head hydrophilic. Glycerol itself polarizes a fatty acid, but the glycerol is located in the head, not the backbone, and is not charged like phosphate.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
In sufficient concentrations, one-tailed phospholipids will form a in solution.
Tap to see back →
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
The polar head groups and the hydrocarbon tails will separate themselves in such a way that one-tailed phospholipids will form micelles, whereas two-tailed phospholipids will form a bilayer (liposome).
Which of the following is false about phospholipids?
Which of the following is false about phospholipids?
Tap to see back →
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Phospholipids have two hydrocarbon tails, and one is indeed usually relatively saturated (has no double bonds) and the other relatively saturated (has double bonds). The degree of saturation, as well as the length, influences membrane fluidity; more cis-double bonds pack together less tightly, and decrease fluidity. In order to minimize free energy, the hydrophobic parts of phospholipids rearrange to refill a bilayer if it happens to break. In water, phospholipids can form a membrane, or a sphere called a micelle in which the hydrophobic tails pack together. Note that the tails are hydrophobic, and the heads are hydrophilic; tails are oriented toward the interior of a bilayered membrane.
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Why do phospholipids and glycolipids form bilayers rather than micelles when placed in an aqueous media?
Tap to see back →
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Phospholipids and glycolipids have two hydrocarbon chains, whereas free fatty acids only have one. The extra carbon tail, in combination with the unsaturation of these types of lipids (double bonds present) makes them far bulkier than free fatty acids. The extra bulk disallows micelle formation, and bilayers (liposomes) form instead.
Which of the following is not a component of a typical phospholipid?
Which of the following is not a component of a typical phospholipid?
Tap to see back →
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.
A typical phospholipid is made up of a glycerol with two fatty acid carbon chains stemming off of it. On the other side of the glycerol a phosphate group is connected, an ester group connects the tail to the head. An amino group, however, is not present.