Coordinate Geometry - GMAT Quantitative

Card 0 of 1283

Question

If is modeled by , find the slope of .

I) .

II) crosses the -axis at .

Answer

I) Tells us the two lines are parallel. Parallel lines have the same slope.

II) Gives us the x-intercept of b(t). By itself this gives us no clue as to the slop of b. If we had another point on b(t) we could find the slope, but we don't have another point.

So, statement I is what we need.

Compare your answer with the correct one above

Question

Calculate the slope of a line parallel to line .

  1. Line passes through points and .
  2. The equation for line is .

Answer

Statement 1: Since we're referring to a line parallel to line XY, the slopes will be identical. We can use the points provided to calculate the slope:

We can simplify the slope to just .

Statement 2: Finding the slope of a line parallel to line XY is really straightforward when given the equation of a line.

Where is the slope and the y-intercept.

In this case, our value is .\

Each statement alone is sufficient to answer the question.

Compare your answer with the correct one above

Question

Find the slope of the line parallel to .

I) passes through the point .

II) has an x-intercept of 290.

Answer

Recall that parallel lines have the same slope and that slope can be calculated from any two points.

Statement I gives us a point on

Statement II gives us the x-intercept, a.k.a. the point .

Therfore, using both statements, we can find the slope of and any line parallel to it.

Compare your answer with the correct one above

Question

One line includes the points and ; a second line includes the points and . If these lines are parallel, what is the value of ?

Answer

The lines are parallel, so their slopes are equal.

The slope of the first is .

The slope of the second is .

Set the two equal to each other:

If you know that , then you can easily find by substituting:

Cross-multiply and solve:

If you know that , do the same thing:

Therefore, either statement alone is sufficient to answer the question.

Compare your answer with the correct one above

Question

You are given two lines. Are they parallel?

Statement 1: The product of their slopes is .

Statement 2: One has positive slope; one has negative slope.

Answer

Two parallel lines must have the same slope. Therefore, the product of the slopes will be the product of two real numbers of like sign, which must be positive. Each of the two statements contradicts this, so either statement alone answers the question.

Compare your answer with the correct one above

Question

You are given two distinct lines, and on the coordinate plane. Are they parallel lines, perpendicular lines, or neither of these?

Statement 1: The absolute value of the slope of Line is 1.

Statement 2: The absolute value of the slope of Line is 1.

Answer

Assume both statements are true. Then three things are possible:

Case 1: Both lines will have slope 1, or

Case 2: Both lines will have slope

In either case, since the lines have the same slope, they are parallel.

Case 3: One line has slope 1 and one has slope

In this case the lines are perpendicular.

The two statements therefore provide insufficient information.

Compare your answer with the correct one above

Question

You are given two distinct lines, Line and Line , on the coordinate plane. Neither line is horizontal or vertical. Are they parallel lines, perpendicular lines, or neither of these?

Statement 1: The product of the slopes of the two lines is .

Statement 2: The absolute value of the slope of Line is .

Answer

The question can be answered by finding and comparing the slopes of the lines. The lines are parallel if and only if they have the same slope, and perpendicular if and only if the product of the slopes is .

Statement 1 alone does not answer the question. Two lines with slope 1 are parallel, and a line with slope 2 and a line with slope are not, but in both cases, the product of the slopes is 1.

Statement 2 alone gives that Line has slope 1 or , but nothing is given about the slope of Line .

Now, assume both statements are true. From Statement 2, has slope 1 or . From Statement 1, the product of the slopes is 1; if the slope of is 1, then the slope of is , and if the slope of is , then the slope of is . Therefore, if both statements are true, the lines have the same slope, making them parallel.

Compare your answer with the correct one above

Question

You are given distinct lines and on the coordinate plane. Are they parallel, perpendicular, or neither?

Statement 1: The product of the slopes of the two lines is .

Statement 2: The slope of Line is .

Answer

The answer to the question depends on the slopes of the lines - parallel lines have the same slope, and perpendicular lines have slopes that have product .

Statement 1 alone only eliminates the possiblity of the lines being perpendicular, since the product of the slope is not . Two lines with slope 3 are parallel, and one line with slope 1 and one with slope 9 are neither parallel nor perpendicular; both pairs of lines satisfy Statement 1, but only the first pair is parallel. Therefore, Statement 1 only establishes that they are not perpendicular.

From Statement 2, only the slope of is given; without the slope of , the question cannot be answered.

Assume both statements to be true. Then since Line has slope and the product of the slopes is 9, The slope of Line is . Therefore, both lines have slope , and the lines are parallel.

Compare your answer with the correct one above

Question

You are given distinct lines and on the coordinate plane. Are they parallel, perpendicular, or neither?

Statement 1: Line has -intercept and line has -intercept .

Statement 1: Line has -intercept and line has -intercept .

Answer

The answer to the question depends on the slopes of the lines—parallel lines have the same slope, and perpendicular lines have slopes that have product .

From Statement 1 alone, we only know one point of each line, so no information about their slopes can be determined; the same holds for Statement 2.

Assume both statements are true. Then we know two points of each line—specifically, both intercepts—from which we can determine the slope of each by way of the slope formula. After doing so, we can use the slopes to answer the question.

Compare your answer with the correct one above

Question

You are given distinct lines and on the coordinate plane. Are they parallel, perpendicular, or neither?

Statement 1: Line has slope 3 and Line has slope .

Statement 2: Line has -intercept and Line has -intercept .

Answer

Two lines are parallel if and only if they have the same slope, and perpendicular if and only if their slopes have product .

Assume Statement 1 alone. Since the product of the slopes is , the lines are perpendicular.

Statement 2 alone is unhelpful, since no information about the slope of a line can be determined from only one point.

Compare your answer with the correct one above

Question

You are given distinct lines and on the coordinate plane. Are they parallel, perpendicular, or neither?

Statement 1: Line has slope 3 and Line has slope .

Statement 2: Both lines have -intercept .

Answer

Two lines can be determined to be parallel, perpendicular, or neither from their slopes.

Assume Statement 1 alone. Parallel lines must have the same slope, so this choice can be eliminated. The slopes of perpendicular lines must have product ; since the product of the slopes is , this choice can be eliminated as well. It can therefore be deduced that the lines are neither parallel nor perpendicular.

Assume Statement 2 alone. Since the lines have at least one point in common, they are not parallel, but this is the only choice that can be eliminated.

Compare your answer with the correct one above

Question

You are given distinct lines and on the coordinate plane. Are they parallel, perpendicular, or neither?

Statement 1: Both lines have slope 3.

Statement 2: Line has -intercept and Line has -intercept .

Answer

Two lines can be determined to be parallel, perpendicular, or neither from their slopes.

Assume Statement 1 alone is true. Since these distinct lines have the same slope, they are parallel.

Assume Statement 2 alone is true. No information about the slopes of the lines can be determined from one single point, so Statement 2 alone is insufficient.

Compare your answer with the correct one above

Question

Find the slope of the line tangent to circle at the point .

I) Circle has a radius of units.

II) The area of circle f is .

Answer

In this case, I and II give us a ton of information about the size of the circle, but we have no clue as to its location.

In order to know the slope of the tangent line, we need to know location of the circle, so we cannot solve this problem.

Compare your answer with the correct one above

Question

Find the equation of linear function given the following statements.

I)

II) intercepts the x-axis at 9.

Answer

To find the equation of a linear function, we need some combination of slope and a point.

Statement I gives us a clue to find the slope of the desired function. It must be the opposite reciprocal of the slope of . This makes the slope of equal to

Statement II gives us a point on our desired function, .

Using slope-intercept form, we get the following:

So our equation is as follows

Compare your answer with the correct one above

Question

Find the equation for linear function .

I) and

II)

Answer

Find the equation for linear function p(x)

I) and

II)

To begin:

I) Tells us that p(x) must have a slope of 16

II) Tells us a point on p(x). Plug it in and solve for b:

Compare your answer with the correct one above

Question

There are two lines in the xy-coordinate plane, a and b, both with positive slopes. Is the slope of a greater than the slope of b?

1)The square of the x-intercept of a is greater than the square of the x-intercept of b.

  1. Lines a and b have an intersection at

Answer

Gmat graph

Given that the square of a negative is still positive, it is possible for a to have an x-intercept that is negative, while still having a positive slope. The example above shows how the square of the x-intercept for line a could be greater, while having still giving line a a slope that is less than that of b.

Compare your answer with the correct one above

Question

Line j passes through the point . What is the equation of line j?

  1. Line j is perpindicular to the line defined by

  2. Line j has an x-intercept of

Answer

Either statement is sufficient.

Line j, as a line, has an equation of the form

Statement 1 gives the equation of a perpindicular line, so the slopes of the two lines are negative reciprocals of each other:

Statement 2 allows the slope to be found using rise over run:

Then, since the x-intercept is known:

Compare your answer with the correct one above

Question

Give the equation of a line.

Statement 1: The line interects the graph of the equation on the -axis.

Statement 2: The line interects the graph of the equation on the -axis.

Answer

Assume both statements to be true. Then the line shares its - and -intercepts with the graph of , which is a parabola. The common -intercept can be found by setting and solving for :

,

making the -intercept of the parabola, and that of the line, .

The common -intercept can be found by setting and solving for :

, in which case , or

, in which case ,

The parabola therefore has two -intercepts, and , so it is not clear which one is the -intercept of the line. Therefore, the equation of the line is also unclear.

Compare your answer with the correct one above

Question

Is the slope of the line positve, negative, zero, or undefined?

Statement 1:

Statement 2:

Answer

, in slope-intercept form, is

Therefore, the sign of is the sign of the slope.

The first statement means that is positive - all that means is that both and are nonzero and of like sign. can be either positive or negative, and consequently, so can slope .

The second statement - that is positive - makes , the sign of the slope, negative.

Compare your answer with the correct one above

Question

Does a given line with intercepts have positive slope or negative slope?

Statement 1:

Statement 2:

Answer

The slope of a line through and is

From Statement 1 alone, we can tell that

,

so we know the sign of the slope.

From Statement 2 alone, we can tell that

But this can be positive or negative - for example:

but

Compare your answer with the correct one above

Tap the card to reveal the answer