Anaerobic Metabolic Pathways - MCAT Biological and Biochemical Foundations of Living Systems
Card 0 of 72
What is the purpose of the formation of lactic acid during anaerobic respiration?
What is the purpose of the formation of lactic acid during anaerobic respiration?
Tap to see back →
Cells need a constant supply of NAD+ to accept electrons during glycolysis in order to produce pyruvate from glucose.
Cells need a constant supply of NAD+ to accept electrons during glycolysis in order to produce pyruvate from glucose.
Which process can occur under anaerobic conditions?
Which process can occur under anaerobic conditions?
Tap to see back →
Glycolysis occurs in the cytosol and does not require oxygen. The pyruvate dehydrogenase complex (PDC) and Kreb's cycle require oxygen indirectly, while the electron transport chain and oxydative phosphorylation require oxygen directly. After glycolysis produces pyruvate, either aerobic respiration or anaerobic respiration can proceed depending on the availability of oxygen.
Glycolysis occurs in the cytosol and does not require oxygen. The pyruvate dehydrogenase complex (PDC) and Kreb's cycle require oxygen indirectly, while the electron transport chain and oxydative phosphorylation require oxygen directly. After glycolysis produces pyruvate, either aerobic respiration or anaerobic respiration can proceed depending on the availability of oxygen.
Which statement is FALSE when comparing aerobic to anaerobic respiration?
Which statement is FALSE when comparing aerobic to anaerobic respiration?
Tap to see back →
Anaerobic respiration creates the byproduct lactic acid. Accumulation of lactic acid in the muscles due to lack of oxygen results in the pain we experience during exercise. Remember that aerobic respiration creates 36 ATP molecules per glucose, while anaerobic repiration forms only 2 ATP molecules per glucose. Since both processes begin with glycolysis, pyruvate is still generated.
Note that while lactic acid is responsible for the "burn" in muscles during exercise, other agents are responsible for muscle soreness after exercise.
Anaerobic respiration creates the byproduct lactic acid. Accumulation of lactic acid in the muscles due to lack of oxygen results in the pain we experience during exercise. Remember that aerobic respiration creates 36 ATP molecules per glucose, while anaerobic repiration forms only 2 ATP molecules per glucose. Since both processes begin with glycolysis, pyruvate is still generated.
Note that while lactic acid is responsible for the "burn" in muscles during exercise, other agents are responsible for muscle soreness after exercise.
While running a marathon, an individual feels pain and a burning sensation in her legs. One reason for this is the conversion of pyruvate into lactic acid which the body does in order to .
While running a marathon, an individual feels pain and a burning sensation in her legs. One reason for this is the conversion of pyruvate into lactic acid which the body does in order to .
Tap to see back →
In the absence of available oxygen, the body conducts metabolism anaerobically in a process known as fermentation. During strenuous exercise, like running a marathon, the body needs to generate ATP at a rate faster than oxygen is becoming available.
To combat this issue, the body converts pyruvate and NADH, generated in glycolysis, into lactic acid and NAD+, respectively. This regenerated NAD+ can participate in further glycolysis to generate more ATP, even in the absence of oxygen. Oxygen only becomes a necessary reactant in the electron transport chain; thus, glycolysis can continue to generate limited amounts of ATP in an anaerobic environment as long as NAD+ is present.
In the absence of available oxygen, the body conducts metabolism anaerobically in a process known as fermentation. During strenuous exercise, like running a marathon, the body needs to generate ATP at a rate faster than oxygen is becoming available.
To combat this issue, the body converts pyruvate and NADH, generated in glycolysis, into lactic acid and NAD+, respectively. This regenerated NAD+ can participate in further glycolysis to generate more ATP, even in the absence of oxygen. Oxygen only becomes a necessary reactant in the electron transport chain; thus, glycolysis can continue to generate limited amounts of ATP in an anaerobic environment as long as NAD+ is present.
Which of the following products cannot be directly formed from pyruvate?
Which of the following products cannot be directly formed from pyruvate?
Tap to see back →
Pyruvate can be decarboxylated to make acetyl-CoA. This is the process that initiates the citric acid cycle. Pyruvate can also undergo fermentation, and be reduced to either lactic acid or acetaldehyde. Acetaldehyde can then be reduced to ethanol, however, pyruvate cannot directly be converted to ethanol.
Pyruvate can be decarboxylated to make acetyl-CoA. This is the process that initiates the citric acid cycle. Pyruvate can also undergo fermentation, and be reduced to either lactic acid or acetaldehyde. Acetaldehyde can then be reduced to ethanol, however, pyruvate cannot directly be converted to ethanol.
What is the purpose of fermentation?
What is the purpose of fermentation?
Tap to see back →
Fermentation occurs in the absence of oxygen, and reduces pyruvate to the end product of either ethanol or lactic acid. Since pyruvate is being reduced, NADH is oxidized to NAD+, which is needed for the initial glycolysis reaction to produce pyruvate. During anaerobic respiration, glycolysis is still able to function, but only if NAD+ is available; thus, fermentation allows the regeneration of NAD+ in order for glycolysis to proceed in the absence of oxygen.
Fermentation occurs in the absence of oxygen, and reduces pyruvate to the end product of either ethanol or lactic acid. Since pyruvate is being reduced, NADH is oxidized to NAD+, which is needed for the initial glycolysis reaction to produce pyruvate. During anaerobic respiration, glycolysis is still able to function, but only if NAD+ is available; thus, fermentation allows the regeneration of NAD+ in order for glycolysis to proceed in the absence of oxygen.
Which choice accurately states the amount of ATP produced from a single glucose molecule in an anaerobic environment and in an aerobic environment, respectively?
Which choice accurately states the amount of ATP produced from a single glucose molecule in an anaerobic environment and in an aerobic environment, respectively?
Tap to see back →
In an anaerobic environment, two net ATP are produced from glycolysis. Since glycolysis requires an investment of two ATP and produces four ATP, it has a total net yield of two ATP. In an aerobic environment, however, the cell performs glycolysis, pyruvate decarboxylation, the citric acid cycle, and oxidative phosphorylation. These processes together yield a net of 36 ATP.
In an anaerobic environment, two net ATP are produced from glycolysis. Since glycolysis requires an investment of two ATP and produces four ATP, it has a total net yield of two ATP. In an aerobic environment, however, the cell performs glycolysis, pyruvate decarboxylation, the citric acid cycle, and oxidative phosphorylation. These processes together yield a net of 36 ATP.
How many molecules of ATP would be produced and available for use if four molecules of glucose were used during anaerobic respiration?
How many molecules of ATP would be produced and available for use if four molecules of glucose were used during anaerobic respiration?
Tap to see back →
Two net molecules of ATP are produced via anaerobic cellular respiration.
Two net molecules of ATP are produced via anaerobic cellular respiration.
What is the net ATP production if 4 glucose molecules are oxidized in anaerobic conditions?
What is the net ATP production if 4 glucose molecules are oxidized in anaerobic conditions?
Tap to see back →
During anaerobic conditions only glycolysis occurs. Glycolysis alone produces 4 ATP per glucose, but requires an input of 2 ATP per glucose. Thus, 2 ATP per glucose are yielded through glycolysis.
During anaerobic conditions only glycolysis occurs. Glycolysis alone produces 4 ATP per glucose, but requires an input of 2 ATP per glucose. Thus, 2 ATP per glucose are yielded through glycolysis.
What is the purpose of the formation of lactic acid during anaerobic respiration?
What is the purpose of the formation of lactic acid during anaerobic respiration?
Tap to see back →
Cells need a constant supply of NAD+ to accept electrons during glycolysis in order to produce pyruvate from glucose.
Cells need a constant supply of NAD+ to accept electrons during glycolysis in order to produce pyruvate from glucose.
Which process can occur under anaerobic conditions?
Which process can occur under anaerobic conditions?
Tap to see back →
Glycolysis occurs in the cytosol and does not require oxygen. The pyruvate dehydrogenase complex (PDC) and Kreb's cycle require oxygen indirectly, while the electron transport chain and oxydative phosphorylation require oxygen directly. After glycolysis produces pyruvate, either aerobic respiration or anaerobic respiration can proceed depending on the availability of oxygen.
Glycolysis occurs in the cytosol and does not require oxygen. The pyruvate dehydrogenase complex (PDC) and Kreb's cycle require oxygen indirectly, while the electron transport chain and oxydative phosphorylation require oxygen directly. After glycolysis produces pyruvate, either aerobic respiration or anaerobic respiration can proceed depending on the availability of oxygen.
Which statement is FALSE when comparing aerobic to anaerobic respiration?
Which statement is FALSE when comparing aerobic to anaerobic respiration?
Tap to see back →
Anaerobic respiration creates the byproduct lactic acid. Accumulation of lactic acid in the muscles due to lack of oxygen results in the pain we experience during exercise. Remember that aerobic respiration creates 36 ATP molecules per glucose, while anaerobic repiration forms only 2 ATP molecules per glucose. Since both processes begin with glycolysis, pyruvate is still generated.
Note that while lactic acid is responsible for the "burn" in muscles during exercise, other agents are responsible for muscle soreness after exercise.
Anaerobic respiration creates the byproduct lactic acid. Accumulation of lactic acid in the muscles due to lack of oxygen results in the pain we experience during exercise. Remember that aerobic respiration creates 36 ATP molecules per glucose, while anaerobic repiration forms only 2 ATP molecules per glucose. Since both processes begin with glycolysis, pyruvate is still generated.
Note that while lactic acid is responsible for the "burn" in muscles during exercise, other agents are responsible for muscle soreness after exercise.
While running a marathon, an individual feels pain and a burning sensation in her legs. One reason for this is the conversion of pyruvate into lactic acid which the body does in order to .
While running a marathon, an individual feels pain and a burning sensation in her legs. One reason for this is the conversion of pyruvate into lactic acid which the body does in order to .
Tap to see back →
In the absence of available oxygen, the body conducts metabolism anaerobically in a process known as fermentation. During strenuous exercise, like running a marathon, the body needs to generate ATP at a rate faster than oxygen is becoming available.
To combat this issue, the body converts pyruvate and NADH, generated in glycolysis, into lactic acid and NAD+, respectively. This regenerated NAD+ can participate in further glycolysis to generate more ATP, even in the absence of oxygen. Oxygen only becomes a necessary reactant in the electron transport chain; thus, glycolysis can continue to generate limited amounts of ATP in an anaerobic environment as long as NAD+ is present.
In the absence of available oxygen, the body conducts metabolism anaerobically in a process known as fermentation. During strenuous exercise, like running a marathon, the body needs to generate ATP at a rate faster than oxygen is becoming available.
To combat this issue, the body converts pyruvate and NADH, generated in glycolysis, into lactic acid and NAD+, respectively. This regenerated NAD+ can participate in further glycolysis to generate more ATP, even in the absence of oxygen. Oxygen only becomes a necessary reactant in the electron transport chain; thus, glycolysis can continue to generate limited amounts of ATP in an anaerobic environment as long as NAD+ is present.
Which of the following products cannot be directly formed from pyruvate?
Which of the following products cannot be directly formed from pyruvate?
Tap to see back →
Pyruvate can be decarboxylated to make acetyl-CoA. This is the process that initiates the citric acid cycle. Pyruvate can also undergo fermentation, and be reduced to either lactic acid or acetaldehyde. Acetaldehyde can then be reduced to ethanol, however, pyruvate cannot directly be converted to ethanol.
Pyruvate can be decarboxylated to make acetyl-CoA. This is the process that initiates the citric acid cycle. Pyruvate can also undergo fermentation, and be reduced to either lactic acid or acetaldehyde. Acetaldehyde can then be reduced to ethanol, however, pyruvate cannot directly be converted to ethanol.
What is the purpose of fermentation?
What is the purpose of fermentation?
Tap to see back →
Fermentation occurs in the absence of oxygen, and reduces pyruvate to the end product of either ethanol or lactic acid. Since pyruvate is being reduced, NADH is oxidized to NAD+, which is needed for the initial glycolysis reaction to produce pyruvate. During anaerobic respiration, glycolysis is still able to function, but only if NAD+ is available; thus, fermentation allows the regeneration of NAD+ in order for glycolysis to proceed in the absence of oxygen.
Fermentation occurs in the absence of oxygen, and reduces pyruvate to the end product of either ethanol or lactic acid. Since pyruvate is being reduced, NADH is oxidized to NAD+, which is needed for the initial glycolysis reaction to produce pyruvate. During anaerobic respiration, glycolysis is still able to function, but only if NAD+ is available; thus, fermentation allows the regeneration of NAD+ in order for glycolysis to proceed in the absence of oxygen.
Which choice accurately states the amount of ATP produced from a single glucose molecule in an anaerobic environment and in an aerobic environment, respectively?
Which choice accurately states the amount of ATP produced from a single glucose molecule in an anaerobic environment and in an aerobic environment, respectively?
Tap to see back →
In an anaerobic environment, two net ATP are produced from glycolysis. Since glycolysis requires an investment of two ATP and produces four ATP, it has a total net yield of two ATP. In an aerobic environment, however, the cell performs glycolysis, pyruvate decarboxylation, the citric acid cycle, and oxidative phosphorylation. These processes together yield a net of 36 ATP.
In an anaerobic environment, two net ATP are produced from glycolysis. Since glycolysis requires an investment of two ATP and produces four ATP, it has a total net yield of two ATP. In an aerobic environment, however, the cell performs glycolysis, pyruvate decarboxylation, the citric acid cycle, and oxidative phosphorylation. These processes together yield a net of 36 ATP.
How many molecules of ATP would be produced and available for use if four molecules of glucose were used during anaerobic respiration?
How many molecules of ATP would be produced and available for use if four molecules of glucose were used during anaerobic respiration?
Tap to see back →
Two net molecules of ATP are produced via anaerobic cellular respiration.
Two net molecules of ATP are produced via anaerobic cellular respiration.
What is the net ATP production if 4 glucose molecules are oxidized in anaerobic conditions?
What is the net ATP production if 4 glucose molecules are oxidized in anaerobic conditions?
Tap to see back →
During anaerobic conditions only glycolysis occurs. Glycolysis alone produces 4 ATP per glucose, but requires an input of 2 ATP per glucose. Thus, 2 ATP per glucose are yielded through glycolysis.
During anaerobic conditions only glycolysis occurs. Glycolysis alone produces 4 ATP per glucose, but requires an input of 2 ATP per glucose. Thus, 2 ATP per glucose are yielded through glycolysis.
What is the purpose of the formation of lactic acid during anaerobic respiration?
What is the purpose of the formation of lactic acid during anaerobic respiration?
Tap to see back →
Cells need a constant supply of NAD+ to accept electrons during glycolysis in order to produce pyruvate from glucose.
Cells need a constant supply of NAD+ to accept electrons during glycolysis in order to produce pyruvate from glucose.
Which process can occur under anaerobic conditions?
Which process can occur under anaerobic conditions?
Tap to see back →
Glycolysis occurs in the cytosol and does not require oxygen. The pyruvate dehydrogenase complex (PDC) and Kreb's cycle require oxygen indirectly, while the electron transport chain and oxydative phosphorylation require oxygen directly. After glycolysis produces pyruvate, either aerobic respiration or anaerobic respiration can proceed depending on the availability of oxygen.
Glycolysis occurs in the cytosol and does not require oxygen. The pyruvate dehydrogenase complex (PDC) and Kreb's cycle require oxygen indirectly, while the electron transport chain and oxydative phosphorylation require oxygen directly. After glycolysis produces pyruvate, either aerobic respiration or anaerobic respiration can proceed depending on the availability of oxygen.