Card 0 of 9157
If x/3 = 50, then what is x/10 equal to?
1. Solve for x in x/3 = 50
2. x = 150
3.Substitute 150 for x in x/10
4. x = 15
Compare your answer with the correct one above
4x - 5y = 12
6y - 3x = -6
Quantity A: x + y
Quantity B: 6
Add the two equations:
4x - 5y = 12 plus
6y - 3x = -6:
4x - 5y + (6y - 3x) = 12 + (-6)
4x - 3x + 6y - 5y = 12 - 6
x + y = 6
Compare your answer with the correct one above
If 3x = 12, y/4 = 10, and 4z = 9, what is the value of (10xyz)/xy?
Solve for the variables, the plug into formula.
x = 12/3 = 4
y = 10 * 4 = 40
z= 9/4 = 2 1/4
10xyz = 3600
Xy = 160
3600/160 = 22 1/2
Compare your answer with the correct one above
Which of the following is equal to the expression , where
xyz ≠ 0?
(xy)4 can be rewritten as x4y4 and z0 = 1 because a number to the zero power equals 1. After simplifying, you get 1/y.
Compare your answer with the correct one above
Simplify x/2 – x/5
Simplifying this expression is similar to 1/2 – 1/5. The denominators are relatively prime (have no common factors) so the least common denominator (LCD) is 2 * 5 = 10. So the problem becomes 1/2 – 1/5 = 5/10 – 2/10 = 3/10.
Compare your answer with the correct one above
If is an integer, which of the following is a possible value of
?
, which is an integer (a number with no fraction or decimal part). All the other choices reduce to non-integers.
Compare your answer with the correct one above
Simplify:
Find the common factors of the numerator and denominator. They both share factors of 2,4, and 8. For simplicity, factor out an 8 from both terms and simplify.
Compare your answer with the correct one above
Simplify:
First, let's simplify . The greatest common factor of 4 and 12 is 4. 4 divided by 4 is 1 and 12 divided by 4 is 3. Therefore
.
To simply fractions with exponents, subtract the exponent in the numerator from the exponent in the denominator. That leaves us with or
Compare your answer with the correct one above
Which of the following fractions is not equivalent to ?
Let us simplify :
We can get alternate forms of the same fraction by multiplying the denominator and the numerator by the same number:
Now let's look at :
, but
.
Therefore, is the correct answer, as it is not equivalent to
.
Compare your answer with the correct one above
Which of the following is not equal to 32/24?
24/32 = 1.33
16/12 =1.33
224/168 =1.33
4/3 = 1.33
96/72 = 1.33
160/96 = 1.67
Compare your answer with the correct one above
Find the root of
The root occurs where . So we substitute 0 for
.
This means that the root is at .
Compare your answer with the correct one above
Simplify the fraction below:
The correct approach to solve this problem is to first write factors for the numerator and the denominator:
The highest common factor is 5. Therefore, you can divide the numerator and denominator by 5 in order to get a simplified fraction.
Thus the numerator becomes,
and the denominator becomes
.
Therefore the final answer is .
Compare your answer with the correct one above
Simply the following fraction:
Remember that when you divide a fraction by a fraction, that is the same as multiplying the fraction in the numerator by the reciprocal of the fraction in the denominator.
In other words,
Simplifying this final fraction gives us our correct answer, .
Compare your answer with the correct one above
Solve for .
To solve for , simplify the fraction. In order to do this, recall that dividing by a fraction is the same as multiplying by its reciprocal. Therefore, rewrite the equation as follows.
Now, simplify the first fraction by calculating four squared.
From here, factor the denominator of the second fraction.
Next, factor the 16.
From here, cancel out like terms that are in both the numerator and denominator. In this particular case that includes (x-2) and 2.
Now, distribute the eight.
Next, multiply both sides by the denominator.
The (8x+16) cancels out and leaves the following equation.
Now to solve for perform opposite operations to move all numerical values to one side of the equation leaving
by itself on the other side of the equation.
Compare your answer with the correct one above
Given a♦b = (a+b)/(a-b) and b♦a = (b+a)/(b-a), which of the following statement(s) is(are) true:
I. a♦b = -(b♦a)
II. (a♦b)(b♦a) = (a♦b)2
III. a♦b + b♦a = 0
Notice that - (a-b) = b-a, so statement I & III are true after substituting the expression. Substitute the expression for statement II gives ((a+b)/(a-b))((a+b)/(b-a))=((a+b)(b+a))/((-1)(a-b)(a-b))=-1 〖(a+b)〗2/〖(a-b)〗2 =-((a+b)/(a-b))2 = -(a♦b)2 ≠ (a♦b)2
Compare your answer with the correct one above
Tim is two years older than his twin sisters, Rachel and Claire. The sum of their ages is 65. How old is Tim?
The answer is 23.
Since Rachel and Claire are twins they are the same age. We will use the variable r to represent both Rachel and Claire's ages.
From the question we can form two equations. They are:
t = r + 2 and 65 = t + 2r
lets plug the first equation into the second to solve for r.
65 = (r + 2) + 2r
65 = 3r +2
63 = 3r
r = 21 This means Rachel and Claire are 21 years old. Plug this into the equation so
t = 23 Tim is 23 years old.
Compare your answer with the correct one above
A store sells potatoes for $0.24 and tomatoes for $0.76. Fred bought 12 individual vegetables. If he paid $6.52 total, how many potatoes did Fred buy?
Set up an equation to represent the total cost in cents: 24P + 76T = 652. In order to reduce the number of variables from 2 to 1, let the # tomatoes = 12 – # of potatoes. This makes the equation 24P + 76(12 – P) = 652.
Solving for P will give the answer.
Compare your answer with the correct one above
Kim is twice as old as Claire. Nick is 3 years older than Claire. Kim is 6 years older than Emily. Their ages combined equal 81. How old is Nick?
The goal in this problem is to have only one variable. Variable “x” can designate Claire’s age.
Then Nick is x + 3, Kim is 2x, and Emily is 2x – 6; therefore x + x + 3 + 2x + 2x – 6 = 81
Solving for x gives Claire’s age, which can be used to find Nick’s age.
Compare your answer with the correct one above
If 6h – 2g = 4g + 3h
In terms of g, h = ?
If we solve the equation for b, we add 2g to, and subtract 3h from, both sides, leaving 3h = 6g. Solving for h we find that h = 2g.
Compare your answer with the correct one above
If 2x + y = 9 and y – z = 4 then 2x + z = ?
If we solve the first equation for 2x we find that 2x = 9 – y. If we solve the second equation for z we find z = –4 + y. Adding these two manipulated equations together we see (2x) + (y) = (9 – y)+(–4 + y).
The y’s cancel leaving us with an answer of 5.
Compare your answer with the correct one above