ACT Math : How to find a missing side with sine

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find A Missing Side With Sine

You have a 30-60-90 triangle. If the hypotenuse length is 8, what is the length of the side opposite the 30 degree angle?

Possible Answers:

3√3

3

4√2

4

4√3

Correct answer:

4

Explanation:

sin(30º) = ½

sine = opposite / hypotenuse

½ = opposite / 8

Opposite = 8 * ½ = 4

Example Question #1 : How To Find A Missing Side With Sine

If a right triangle has a 30 degree angle, and the opposite leg of the 30 degree angle has a measure of 12, what is the value of the hypotenuse?

Possible Answers:

18

24

12 * 21/2

15

12 * 31/2

Correct answer:

24

Explanation:

Use SOHCAHTOA. Sin(30) = 12/x, then 12/sin(30) = x = 24.

You can also determine the side with a measure of 12 is the smallest side in a 30:60:90 triangle. The hypotenuse would be twice the length of the smallest leg.

Example Question #1 : How To Find A Missing Side With Sine

Circle_chord_2

The radius of the above circle is \displaystyle 5\displaystyle A is the center of the circle. \displaystyle \angle A = 110^{\circ}. Find the length of chord \displaystyle \overline{BC}.

Possible Answers:

\displaystyle 10

\displaystyle 7.1

\displaystyle 5

\displaystyle 8.2

\displaystyle 9.4

Correct answer:

\displaystyle 8.2

Explanation:

We can solve for the length of the chord by drawing a line the bisects the angle and the chord, shown below as \displaystyle \overline{AD}.

Circle_chord_4

In this circle, we can see the triangle \displaystyle \bigtriangleup ADC has a hypotenuse equal to the radius of the circle (\displaystyle \overline{AC}), an angle \displaystyle \theta equal to half the angle made by the chord, and a side \displaystyle \overline{CD} that is half the length of the chord.  By using the sine function, we can solve for \displaystyle \overline{CD}.

\displaystyle \sin = \frac{\textup{opposite}}{\textup{hypotenuse}}

\displaystyle \sin \left ( \theta\right ) = \frac{\overline{CD}}{\overline{AC}}

\displaystyle \sin \left ( 55^{\circ}\right ) = \frac{\overline{CD}}{5}

\displaystyle 5\sin \left ( 55^{\circ}\right ) = \overline{CD}

\displaystyle 4.1 = \overline{CD}

The length of the entire chord is twice the length of \displaystyle \overline{CD}, so the entire chord length is \displaystyle 8.2.

Example Question #3 : How To Find A Missing Side With Sine

Circle_chord_2

The above circle has a radius of \displaystyle 8 and a center at \displaystyle A. \displaystyle \angle A = 127^{\circ}. Find the length of chord \displaystyle \overline{BC}.

Possible Answers:

\displaystyle 11.3

\displaystyle 7.1

\displaystyle 12.8

\displaystyle 14.3

\displaystyle 16

Correct answer:

\displaystyle 14.3

Explanation:

We can solve for the length of the chord by drawing a line the bisects the angle and the chord, shown below as \displaystyle \overline{AD}.

Circle_chord_4

In this circle, we can see the triangle \displaystyle \bigtriangleup ADC has a hypotenuse equal to the radius of the circle (\displaystyle \overline{AC}), an angle \displaystyle \theta equal to half the angle made by the chord, and a side \displaystyle \overline{CD} that is half the length of the chord.  By using the sine function, we can solve for \displaystyle \overline{CD}.

\displaystyle \sin = \frac{\textup{opposite}}{\textup{hypotenuse}}

\displaystyle \sin \left (\theta\right ) = \frac{\overline{CD}}{\overline{AC}}

\displaystyle \sin \left ( 63.5^{\circ}\right ) = \frac{\overline{CD}}{8}

\displaystyle 8\sin \left ( 63.5^{\circ}\right ) = \overline{CD}

\displaystyle 7.16 = \overline{CD}

The length of the entire chord is twice the length of \displaystyle \overline{CD}, so the entire chord length is \displaystyle 14.3.

Example Question #1 : How To Find A Missing Side With Sine

Sin47

What is \displaystyle x in the right triangle above? Round to the nearest hundredth.

Possible Answers:

\displaystyle \small 24.54

\displaystyle \small 21.78

\displaystyle \small 38.52

\displaystyle \small 41.93

\displaystyle \small 31.31

Correct answer:

\displaystyle \small 21.78

Explanation:

Recall that the sine of an angle is the ratio of the opposite side to the hypotenuse of that triangle. Thus, for this triangle, we can say:

\displaystyle \small sin(27.45)=\frac{x}{47.25}

Solving for \displaystyle \small x, we get:

\displaystyle \small 47.25*sin(27.45)=x

\displaystyle \small x=21.7810391968006 or \displaystyle \small 21.78

Example Question #2 : How To Find A Missing Side With Sine

A man has set up a ground-level sensor to look from the ground to the top of a \displaystyle 30\textup{ foot} tall building. The sensor must have an angle of \displaystyle 25 . 5$^{\circ}$ upward to the top of the building. How far is the sensor from the top of the building? Round to the nearest inch.

Possible Answers:

\displaystyle 69\textup{ feet and 8 inches}

\displaystyle 33\textup{ feet and 9 inches}

\displaystyle 10\textup{ feet and }9\textup{ inches}

\displaystyle 62\textup{ feet and 11 inches}

\displaystyle 69\textup{ feet and 4 inches}

Correct answer:

\displaystyle 69\textup{ feet and 8 inches}

Explanation:

Begin by drawing out this scenario using a little right triangle:

Sin30

Note importantly: We are looking for \displaystyle \small x as the the distance to the top of the building. We know that the sine of an angle is equal to the ratio of the side opposite to that angle to the hypotenuse of the triangle. Thus, for our triangle, we know:

\displaystyle \small sin(25.5) =\frac{30}{x}

Using your calculator, solve for \displaystyle x:

\displaystyle \small \small x=\frac{30}{sin(25.5)}

This is \displaystyle \small 69.6846149202954. Now, take the decimal portion in order to find the number of inches involved.

\displaystyle \small 0.6846149202954 * 12 = 8.2153790435448

 Thus, rounded, your answer is \displaystyle \small 69 feet and \displaystyle \small 8 inches.

Example Question #1 : How To Find A Missing Side With Sine

Below is right triangle \displaystyle ABC with sides \displaystyle a, \: b, \:c. What is \displaystyle \sin(A)?

 

Right triangle

Possible Answers:

\displaystyle \frac{a}{b}

\displaystyle \frac{c}{a}

\displaystyle \frac{b}{c}

\displaystyle \frac{a}{c}

\displaystyle \frac{b}{a}

Correct answer:

\displaystyle \frac{a}{c}

Explanation:

Right triangle

To find the sine of an angle, remember the mnemonic SOH-CAH-TOA. 
This means that 

\displaystyle \textup{sin} = \frac{\textup{opposite}}{\textup{hypotenuse}}
\displaystyle \cos = \frac{\textup{adjacent}}{\textup{hypotenuse}}

\displaystyle \tan = \frac{\textup{opposite}}{\textup{adjacent}}.

We are asked to find the \displaystyle \sin(A). So at point \displaystyle A we see that side \displaystyle a is opposite, and the hypotenuse never changes, so it is always \displaystyle c. Thus we see that 
\displaystyle \sin(A) = \frac{a}{c}

Example Question #26 : Sine

In a given right triangle \displaystyle \Delta ABC, hypotenuse \displaystyle AC = 25 and \displaystyle \angle A = 42^{\circ}. Using the definition of \displaystyle \sin, find the length of leg \displaystyle CB. Round all calculations to the nearest tenth.

Possible Answers:

\displaystyle 22.5

\displaystyle 11.5

\displaystyle 8.5

\displaystyle 2.0

\displaystyle 17.5

Correct answer:

\displaystyle 17.5

Explanation:

In right triangles, SOHCAHTOA tells us that \displaystyle \sin A = \frac{\textup{opposite}}{\textup{hypotenuse}}, and we know that \displaystyle \angle A = 42^{\circ} and hypotenuse \displaystyle AC = 25. Therefore, a simple substitution and some algebra gives us our answer.

\displaystyle \sin 42^{\circ} = \frac{CB}{25}

\displaystyle .7 = \frac{CB}{25} Use a calculator or reference to approximate cosine.

\displaystyle 17.5= CB Isolate the variable term.

 

Thus, \displaystyle 17.5= CB.

Example Question #5 : How To Find A Missing Side With Sine

In a given right triangle \displaystyle \Delta ABC, hypotenuse \displaystyle AC = 5400 and \displaystyle \angle A = 33^{\circ}. Using the definition of \displaystyle \sin, find the length of leg \displaystyle CB. Round all calculations to the nearest tenth.

Possible Answers:

\displaystyle 2916

\displaystyle 2798

\displaystyle 3110

\displaystyle 2845

\displaystyle 3313

Correct answer:

\displaystyle 2916

Explanation:

In right triangles, SOHCAHTOA tells us that \displaystyle \sin A = \frac{\textup{opposite}}{\textup{hypotenuse}}, and we know that \displaystyle \angle A = 33^{\circ} and hypotenuse \displaystyle AC = 5400. Therefore, a simple substitution and some algebra gives us our answer.

\displaystyle \sin 33^{\circ} = \frac{CB}{5400}

\displaystyle .54 = \frac{CB}{5400} Use a calculator or reference to approximate cosine.

\displaystyle 2916= CB Isolate the variable term. 

Thus, \displaystyle 2916= CB.

Example Question #1 : How To Find A Missing Side With Sine

In a given right triangle \displaystyle \Delta ABC, hypotenuse \displaystyle AC = 17 and \displaystyle \angle A = 45^{\circ}. Using the definition of \displaystyle \sin, find the length of leg \displaystyle CB. Round all calculations to the nearest hundredth.

Possible Answers:

\displaystyle 12.02

\displaystyle 23.03

\displaystyle 12.04

\displaystyle 18.52

\displaystyle 14.40

Correct answer:

\displaystyle 12.02

Explanation:

In right triangles, SOHCAHTOA tells us that \displaystyle \sin A = \frac{\textup{opposite}}{\textup{hypotenuse}}, and we know that \displaystyle \angle A = 45^{\circ} and hypotenuse \displaystyle AC = 17. Therefore, a simple substitution and some algebra gives us our answer.

\displaystyle \sin 45^{\circ} = \frac{CB}{17}

\displaystyle 17\cdot \sin 45^{\circ}= CB Isolate the variable term.

 

Thus, \displaystyle 12.02= CB.

Learning Tools by Varsity Tutors