ACT Math : How to find the length of the diagonal of a parallelogram

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find The Length Of The Diagonal Of A Parallelogram

If a rectangular plot measures \(\displaystyle 8 \:ft\) by \(\displaystyle 6\:ft\), what is the length of the diagonal of the plot, in feet?

Possible Answers:

\(\displaystyle 10\:ft\)

\(\displaystyle 9\:ft\)

\(\displaystyle 7\:ft\)

\(\displaystyle 13\:ft\)

\(\displaystyle 11\:ft\)

Correct answer:

\(\displaystyle 10\:ft\)

Explanation:

To answer this question, we must find the diagonal of a rectangle that is \(\displaystyle 8\: ft\) by \(\displaystyle 6\:ft\). Because a rectangle is made up of right angles, the diagonal of a rectangle creates a right triangle with two of the sides. 

Because a right triangle is formed by the diagonal, we can use the Pythagorean Theorem, which is:

\(\displaystyle a^{2}+b^{2}=c^{2}\)

\(\displaystyle a\) and \(\displaystyle b\) each represent a different leg of the triangle and \(\displaystyle c\) represents the length of the hypotenuse, which in this case is the same as the diagonal length. 

We can then plug in our known values and solve for \(\displaystyle c^{2}\)

\(\displaystyle a^{2}+b^{2}=c^{2}\rightarrow 8^{2}+6^{2}=c^{2}\rightarrow 64+36=c^{2}\rightarrow 100=c^{2}\)

We now must take the square root of each side so that we can solve for \(\displaystyle c\)

\(\displaystyle \sqrt{100}=\sqrt{c^{2}}\rightarrow 10=c\)

Therefore, the diagonal of the rectangle is \(\displaystyle 10\:ft\).

Example Question #2 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram_12

\(\displaystyle ABCD\) is a parallelogram. Find the length of diagonal \(\displaystyle \overline{BD}\).

Possible Answers:

\(\displaystyle 49\)

\(\displaystyle 89\)

\(\displaystyle 58\)

\(\displaystyle 17.5\)

\(\displaystyle 41\)

Correct answer:

\(\displaystyle 58\)

Explanation:

To find the length of the diagonal, we can consider only the triangle \(\displaystyle ABD\) and use the law of cosines to find the length of the unknown side.

The Law of Cosines:

\(\displaystyle c^2 = a^2 + b^2 - 2ab\cos \left ( C\right )\)

Where \(\displaystyle c\) is the length of the unknown side, \(\displaystyle a\) and \(\displaystyle b\) are the lengths of the known sides, and \(\displaystyle C\) is the angle between \(\displaystyle a\) and \(\displaystyle b\)

From the problem:

\(\displaystyle \overline{BD}^2 = \overline{AB}^2 + \overline{DA}^2 - 2\left ( \overline{AB} \right )\left (\overline{DA} \right )\cos \left ( \measuredangle A\right )\)

\(\displaystyle \overline{BD}^2 = 35^2 + 82 ^2 - 2\cdot35\cdot82\cdot \cos \left ( 37^{\circ}\right )\)

\(\displaystyle \overline{BD}^2 = 3365\)

\(\displaystyle \overline{BD} = 58\)

Example Question #3 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram_13

\(\displaystyle ABCD\) is a parallelogram. Find the length of diagonal \(\displaystyle \overline{AC}\).

Possible Answers:

\(\displaystyle 108\)

\(\displaystyle 89\)

\(\displaystyle 102\)

\(\displaystyle 136\)

\(\displaystyle 112\)

Correct answer:

\(\displaystyle 112\)

Explanation:

To find the length of the diagonal, we can consider only the triangle \(\displaystyle ACD\) and use the law of cosines to find the length of the unknown side.

The Law of Cosines:

\(\displaystyle c^2 = a^2 + b^2 - 2ab\cos \left ( C\right )\)

Where \(\displaystyle c\) is the length of the unknown side, \(\displaystyle a\) and \(\displaystyle b\) are the lengths of the known sides, and \(\displaystyle C\) is the angle between \(\displaystyle a\) and \(\displaystyle b\)

From the problem:

\(\displaystyle \overline{AC}^2 = \overline{CD}^2 + \overline{DA}^2 - 2\left ( \overline{CD} \right )\left (\overline{DA} \right )\cos \left ( \measuredangle D\right )\)

\(\displaystyle \overline{AC}^2 = 35^2 + 82 ^2 - 2\cdot35\cdot82\cdot \cos \left ( 143^{\circ}\right )\)

\(\displaystyle \overline{AC}^2 = 12553\)

\(\displaystyle \overline{AC} = 112\)

Example Question #1 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram_15

\(\displaystyle ABCD\) is a parallelogram. Find the length of diagonal \(\displaystyle \overline{AC}\).

Possible Answers:

\(\displaystyle 28.3\)

\(\displaystyle 59.1\)

\(\displaystyle 56.6\)

\(\displaystyle 49.2\)

\(\displaystyle 41.8\)

Correct answer:

\(\displaystyle 49.2\)

Explanation:

To find the length of the diagonal, we can consider only the triangle \(\displaystyle ACD\) and use the law of cosines to find the length of the unknown side.

The Law of Cosines:

\(\displaystyle c^2 = a^2 + b^2 - 2ab\cos \left ( C\right )\)

Where \(\displaystyle c\) is the length of the unknown side, \(\displaystyle a\) and \(\displaystyle b\) are the lengths of the known sides, and \(\displaystyle C\) is the angle between \(\displaystyle a\) and \(\displaystyle b\)

From the problem:

\(\displaystyle \overline{AC}^2 = \overline{CD}^2 + \overline{DA}^2 - 2\left ( \overline{CD} \right )\left (\overline{DA} \right )\cos \left ( \measuredangle D\right )\)

\(\displaystyle \overline{AC}^2 = 12^2 + 40 ^2 - 2\cdot12\cdot40\cdot \cos \left ( 135^{\circ}\right )\)

\(\displaystyle \overline{AC}^2 = 2423\)

\(\displaystyle \overline{AC} = 49.2\)

Example Question #1 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram_16

\(\displaystyle ABCD\) is a parallelogram. Find the length of diagonal \(\displaystyle \overline{AC}\).

Possible Answers:

\(\displaystyle 22.4\)

\(\displaystyle 26.5\)

\(\displaystyle 40.0\)

\(\displaystyle 44.8\)

\(\displaystyle 20.0\)

Correct answer:

\(\displaystyle 26.5\)

Explanation:

To find the length of the diagonal, we can consider only the triangle \(\displaystyle ACD\) and use the law of cosines to find the length of the unknown side.

The Law of Cosines:

\(\displaystyle c^2 = a^2 + b^2 - 2ab\cos \left ( C\right )\)

Where \(\displaystyle c\) is the length of the unknown side, \(\displaystyle a\) and \(\displaystyle b\) are the lengths of the known sides, and \(\displaystyle C\) is the angle between \(\displaystyle a\) and \(\displaystyle b\)

From the problem:

\(\displaystyle \overline{AC}^2 = \overline{CD}^2 + \overline{DA}^2 - 2\left ( \overline{CD} \right )\left (\overline{DA} \right )\cos \left ( \measuredangle D\right )\)

\(\displaystyle \overline{AC}^2 = 10^2 + 20 ^2 - 2\cdot10\cdot20\cdot \cos \left ( 120^{\circ}\right )\)

\(\displaystyle \overline{AC}^2 = 700\)

\(\displaystyle \overline{AC} = 26.5\)

Example Question #4 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram_14

\(\displaystyle ABCD\) is a parallelogram. Find the length of diagonal. \(\displaystyle \overline{BD}\).

Possible Answers:

\(\displaystyle 26.0\)

\(\displaystyle 29.5\)

\(\displaystyle 56.6\)

\(\displaystyle 32.6\)

\(\displaystyle 41.8\)

Correct answer:

\(\displaystyle 32.6\)

Explanation:

To find the length of the diagonal, we can consider only the triangle \(\displaystyle ABD\) and use the law of cosines to find the length of the unknown side.

The Law of Cosines:

\(\displaystyle c^2 = a^2 + b^2 - 2ab\cos \left ( C\right )\)

Where \(\displaystyle c\) is the length of the unknown side, \(\displaystyle a\) and \(\displaystyle b\) are the lengths of the known sides, and \(\displaystyle C\) is the angle between \(\displaystyle a\) and \(\displaystyle b\)

From the problem:

\(\displaystyle \overline{BD}^2 = \overline{AB}^2 + \overline{DA}^2 - 2\left ( \overline{AB} \right )\left (\overline{DA} \right )\cos \left ( \measuredangle A\right )\)

\(\displaystyle \overline{BD}^2 = 12^2 + 40 ^2 - 2\cdot12\cdot40\cdot \cos \left ( 45^{\circ}\right )\)

\(\displaystyle \overline{BD}^2 = 1065\)

\(\displaystyle \overline{BD} = 32.6\)

Example Question #3 : How To Find The Length Of The Diagonal Of A Parallelogram

Parallelogram_17

\(\displaystyle ABCD\) is a parallelogram. Find the length of diagonal \(\displaystyle \overline{BD}\).

Possible Answers:

\(\displaystyle \sqrt{300}\)

\(\displaystyle \sqrt{200}\)

\(\displaystyle \sqrt{500}\)

\(\displaystyle \sqrt{100}\)

\(\displaystyle \sqrt{400}\)

Correct answer:

\(\displaystyle \sqrt{300}\)

Explanation:

To find the length of the diagonal, we can consider only the triangle \(\displaystyle ABD\) and use the law of cosines to find the length of the unknown side.

The Law of Cosines:

\(\displaystyle c^2 = a^2 + b^2 - 2ab\cos \left ( C\right )\)

Where \(\displaystyle c\) is the length of the unknown side, \(\displaystyle a\) and \(\displaystyle b\) are the lengths of the known sides, and \(\displaystyle C\) is the angle between \(\displaystyle a\) and \(\displaystyle b\)

From the problem:

\(\displaystyle \overline{BD}^2 = \overline{AB}^2 + \overline{DA}^2 - 2\left ( \overline{AB} \right )\left (\overline{DA} \right )\cos \left ( \measuredangle A\right )\)

\(\displaystyle \overline{BD}^2 = 10^2 + 20 ^2 - 2\cdot10\cdot20\cdot \cos \left ( 60^{\circ}\right )\)

\(\displaystyle \overline{BD}^2 = 300\)

\(\displaystyle \overline{BD} = \sqrt{300}\)

Learning Tools by Varsity Tutors