All ACT Math Resources
Example Questions
Example Question #141 : Triangles
A 44/45/90 triangle has a hypotenuse of . Find the length of one of its legs.
Cannot be determined
It's helpful to remember upon coming across a 45/45/90 triangle that it's a special right triangle. This means that its sides can easily be calculated by using a derived side ratio:
Here, represents the length of one of the legs of the 45/45/90 triangle, and
represents the length of the triangle's hypotenuse. Two sides are denoted as congruent lengths (
) because this special triangle is actually an isosceles triangle. This goes back to the fact that two of its angles are congruent.
Therefore, using the side rules mentioned above, if , this problem can be resolved by solving for the value of
:
Therefore, the length of one of the legs is 1.
Example Question #201 : Plane Geometry
In a 45-45-90 triangle, if the hypothenuse is long, what is a possible side length?
If the hypotenuse of a 45-45-90 triangle is provided, its side length can only be one length, since the sides of all 45-45-90 triangles exist in a defined ratio of , where
represents the length of one of the triangle's legs and
represents the length of the triangle's hypotenuse. Using this method, you can set up a proportion and solve for the length of one of the triangle's sides:
Cross-multiply and solve for .
Rationalize the denominator.
You can also solve this problem using the Pythagorean Theorem.
In a 45-45-90 triangle, the side legs will be equal, so . Substitute
for
and rewrite the formula.
Substitute the provided length of the hypothenuse and solve for .
While the answer looks a little different from the result of our first method of solving this problem, the two represent the same value, just written in different ways.
Example Question #1 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle
In a triangle, if the length of the hypotenuse is
, what is the perimeter?
1. Remember that this is a special right triangle where the ratio of the sides is:
In this case that makes it:
2. Find the perimeter by adding the side lengths together:
Example Question #4 : How To Find The Length Of The Side Of A 45/45/90 Right Isosceles Triangle
The height of a triangle is
. What is the length of the hypotenuse?
Remember that this is a special right triangle where the ratio of the sides is:
In this case that makes it:
Where is the length of the hypotenuse.
Certified Tutor
All ACT Math Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)