Algebra 1 : How to find f(x)

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Algebraic Functions

Given a function \(\displaystyle f(x)=2x^{2}-x+8\), what is \(\displaystyle f(3)\)?

Possible Answers:

\(\displaystyle 23\)

\(\displaystyle 24\)

\(\displaystyle 21\)

\(\displaystyle 20\)

\(\displaystyle 22\)

Correct answer:

\(\displaystyle 23\)

Explanation:

Given a function \(\displaystyle f(x)=2x^{2}-x+8\), we can plug in \(\displaystyle x=3\) to get

\(\displaystyle \\f(3)=2(3)^{2}-(3)+8\\=18-3+8\\=15+8\\=23\).

Example Question #51 : Algebraic Functions

Given a function \(\displaystyle f(x)=5x^{2}+5x+9\), what is \(\displaystyle f(7)\)?

Possible Answers:

\(\displaystyle 292\)

\(\displaystyle 293\)

\(\displaystyle 289\)

\(\displaystyle 291\)

\(\displaystyle 290\)

Correct answer:

\(\displaystyle 289\)

Explanation:

Given a function \(\displaystyle f(x)=5x^{2}+5x+9\), we can plug in \(\displaystyle x=7\) to get

\(\displaystyle \\f(7)=5(7)^{2}+5(7)+9\\=5(49)+35+9\\=245+44\\=289\).

Example Question #101 : Functions And Lines

Given a function \(\displaystyle f(x)=\frac{1}{2}x^{2}-11x+8\), what is \(\displaystyle f(-2)\)?

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 29\)

\(\displaystyle 32\)

\(\displaystyle 31\)

\(\displaystyle 28\)

Correct answer:

\(\displaystyle 32\)

Explanation:

Given a function \(\displaystyle f(x)=\frac{1}{2}x^{2}-11x+8\), we can plug in \(\displaystyle x=-2\) to get

\(\displaystyle \\f(-2)=\frac{1}{2}(-2)^{2}-11(-2)+8\\=2+22+8\\=2+30\\=32\).

Example Question #51 : How To Find F(X)

Given a function \(\displaystyle f(x)=x^{2}-\frac{1}{2}x+\frac{3}{4}\), what is \(\displaystyle f(2)\)?

Possible Answers:

\(\displaystyle \frac{17}{4}\)

\(\displaystyle \frac{21}{4}\)

\(\displaystyle \frac{15}{4}\)

\(\displaystyle \frac{13}{4}\)

\(\displaystyle \frac{19}{4}\)

Correct answer:

\(\displaystyle \frac{15}{4}\)

Explanation:

Given a function

\(\displaystyle f(x)=x^{2}-\frac{1}{2}x+\frac{3}{4}\),

we can plug in \(\displaystyle x=2\) to get

\(\displaystyle \\f(2)=(2)^{2}-\frac{1}{2}(2)+\frac{3}{4}\\ \\=4-1+\frac{3}{4}\\ \\=3+\frac{3}{4}\\ \\=\frac{12}{4}+\frac{3}{4}\\ \\=\frac{15}{4}\)

Example Question #52 : Algebraic Functions

Given a function \(\displaystyle f(x)=x^{3}+2x^{2}+5x\), what is \(\displaystyle f(3)\)?

Possible Answers:

\(\displaystyle 60\)

\(\displaystyle 68\)

\(\displaystyle 62\)

\(\displaystyle 70\)

\(\displaystyle 64\)

Correct answer:

\(\displaystyle 60\)

Explanation:

Given a function 

\(\displaystyle f(x)=x^{3}+2x^{2}+5x\),  

we can plug in \(\displaystyle x=3\) to get

\(\displaystyle \\ f(3)=(3)^{3}+2(3)^{2}+5(3)\\ \\=27+18+15\\ \\=27+33\\ \\=60\).

Example Question #51 : How To Find F(X)

Given a function \(\displaystyle f(x)=-7x^{2}-6x^{2}+15\), what is \(\displaystyle f(1)\)?

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 2\)

Explanation:

Given a function 

\(\displaystyle f(x)=-7x^{2}-6x^{2}+15\),  

we can plug in \(\displaystyle x=1\) to get

\(\displaystyle \\ f(1)=-7(1)^{2}-6(1)^{2}+15\\ \\=-7-6+15\\ \\=-13+15\\ \\=2\).

Example Question #52 : How To Find F(X)

Given a function \(\displaystyle f(x)=x^{3}-9x+3\), what is \(\displaystyle f(3)\)?

Possible Answers:

\(\displaystyle -3\)

\(\displaystyle 9\)

\(\displaystyle 3\)

\(\displaystyle -9\)

\(\displaystyle 27\)

Correct answer:

\(\displaystyle 3\)

Explanation:

Given a function \(\displaystyle f(x)=x^{3}-9x+3\), we can plug in \(\displaystyle x=3\) to get

\(\displaystyle \\ f(3)=(3)^{3}-9(3)+3 \\=27-27+3\\=3\).

Example Question #58 : How To Find F(X)

Given a function \(\displaystyle f(x)=2x^{2}+5x-9\), what is \(\displaystyle f(2)\)?

Possible Answers:

\(\displaystyle -7\)

\(\displaystyle 9\)

\(\displaystyle 7\)

\(\displaystyle 2\)

\(\displaystyle -9\)

Correct answer:

\(\displaystyle 9\)

Explanation:

Given a function \(\displaystyle f(x)=2x^{2}+5x-9\), we can plug in \(\displaystyle x=2\) to get

\(\displaystyle \\f(2)=2(2)^{2}+5(2)-9\\=8+10-9\\=18-9\\=9\).

Example Question #51 : How To Find F(X)

Given a function \(\displaystyle f(x)=\frac{1}{2}x^{2}-\frac{1}{6}x-4\), what is \(\displaystyle f(4)\)?

Possible Answers:

\(\displaystyle \frac{10}{3}\)

\(\displaystyle \frac{11}{3}\)

\(\displaystyle \frac{13}{3}\)

\(\displaystyle 3\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle \frac{10}{3}\)

Explanation:

Given a function \(\displaystyle f(x)=\frac{1}{2}x^{2}-\frac{1}{6}x-4\), we can plug in \(\displaystyle x=4\) to get

\(\displaystyle \\f(4)=\frac{1}{2}(4)^{2}-\frac{1}{6}(4)-4\\ \\=8-\frac{2}{3}-4\\ \\=4-\frac{2}{3}\\ \\=\frac{10}{3}\).

Example Question #60 : How To Find F(X)

For the function \(\displaystyle f(x)=2x^{2}-6x+7\), find \(\displaystyle f(-1)\)

Possible Answers:

\(\displaystyle f(-1)=12\)

\(\displaystyle f(-1)=3\)

\(\displaystyle f(-1)=9\)

\(\displaystyle f(-1)=15\)

\(\displaystyle f(-1)=-1\)

Correct answer:

\(\displaystyle f(-1)=15\)

Explanation:

To find \(\displaystyle f(-1)\), we must plug \(\displaystyle x=-1\) into the provided function:

\(\displaystyle f(x)=2x^{2}-6x+7\)

\(\displaystyle f(-1)=2(-1)^{2}-6(-1)+7\)

\(\displaystyle f(-1)=2(1)-6(-1)+7\)

\(\displaystyle f(-1)=2+6+7\)

\(\displaystyle f(-1)=15\)

Learning Tools by Varsity Tutors