Algebra 1 : How to find the solution to a rational equation with LCD

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : How To Find The Solution To A Rational Equation With Lcd

Find the solution: \(\displaystyle x=\frac{3}{x}+\frac{1}{2}\)

Possible Answers:

\(\displaystyle x=-\frac{3}{2}\)

\(\displaystyle x=-2\)

\(\displaystyle x=\frac{3}{2}\)

\(\displaystyle x=2\)

\(\displaystyle x=\frac{3}{2}\)

\(\displaystyle x=-2\)

\(\displaystyle x=-\frac{3}{2}\)

\(\displaystyle x=2\)

None of these

Correct answer:

\(\displaystyle x=-\frac{3}{2}\)

\(\displaystyle x=2\)

Explanation:

\(\displaystyle x=\frac{3}{x}+\frac{1}{2}\)

Multiply both sides by 2x:

\(\displaystyle (2x)x=(2x)\frac{3}{x}+\frac{1}{2}(2x)\)

\(\displaystyle 2x^2=6+x\)

Move all terms to one side:

\(\displaystyle 2x^2-x-6=0\)

Solve the quadratic:

\(\displaystyle (2x+3)(x-2)=0\)

\(\displaystyle 2x+3=0\rightarrow \mathbf{x=-\frac{3}{2}}\)

\(\displaystyle x-2=0\rightarrow \mathbf{x=2}\)

Learning Tools by Varsity Tutors