Algebra 1 : How to multiply a monomial by a polynomial

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Monomials

Multiply:

\(\displaystyle 4x(3x+5)\)

Possible Answers:

\(\displaystyle 7x + 5\)

\(\displaystyle 12x + 20x\)

\(\displaystyle 7x + 20\)

\(\displaystyle 12x^{2}+ 5\)

\(\displaystyle 12x^2+ 20x\)

Correct answer:

\(\displaystyle 12x^2+ 20x\)

Explanation:

Use the distributive property and multiply \(\displaystyle 4\)\(\displaystyle x\) by both terms of the binomial:

\(\displaystyle 4x (3x+5)\)

\(\displaystyle 4x (3x) + 4x (5)\)

\(\displaystyle 12x^{2} +20x\)

Example Question #41 : Monomials

Simplify the following expression.

\(\displaystyle 3y (-y^{2}-18y+7)\)

Possible Answers:

\(\displaystyle 2y^{3}-21y^{2}+21y\)

\(\displaystyle -3y^{2}-54y+21\)

\(\displaystyle -3y^{2}-33y\)

\(\displaystyle -y^{2}-15y+7\)

Correct answer:

Explanation:

Distribute and multiply \(\displaystyle 3y\) by each of the terms within the parentheses.

\(\displaystyle 3y \times -y^{2}=-3y^{3}\)

\(\displaystyle 3y\times-18y=-54y^{2}\)

\(\displaystyle 3y\times7=21y\)

Regroup the resulting terms

\(\displaystyle -3y^{3}-54y^{2}+21y\)

Example Question #42 : Monomials

Simplify the following expression.

\(\displaystyle 3x(-4x+7)\)

Possible Answers:

\(\displaystyle 12x^{2}-21x\)

\(\displaystyle -x^{2}+10x\)

\(\displaystyle -7x^{2}+4x\)

None of the other answers.

Correct answer:

Explanation:

Distribute \(\displaystyle 3x\) to each of the terms within the parentheses.

\(\displaystyle 3x\times-4x=-12x^{2}\)

\(\displaystyle 3x\times7=21x\)

Putting it back together...

\(\displaystyle -12x^{2}+21x\)

Example Question #44 : How To Multiply A Monomial By A Polynomial

Simplify the following expression.

\(\displaystyle -2x^{2}(2x^{2}-11x)\)

Possible Answers:

\(\displaystyle 4x^{4}-22x^{3}\)

\(\displaystyle x^{4}-13x^{3}\)

\(\displaystyle 22x\)

\(\displaystyle -11x\)

Correct answer:

Explanation:

\(\displaystyle -2x^{2}(2x^{2}-11x)\)

Distribute \(\displaystyle -2x^{2}\) to each term within parentheses.

\(\displaystyle -2x^{2}(2x^{2})=-4x^{4}\)

\(\displaystyle -2x^{2}(-11x)=22x^{3}\)

Putting it back together...

\(\displaystyle -4x^{4}+22x^{3}\)

Learning Tools by Varsity Tutors