Algebra 1 : How to solve two-step equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle 2x+6=20\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 8\)

\(\displaystyle 14\)

\(\displaystyle 9\)

\(\displaystyle 13\)

Correct answer:

\(\displaystyle 7\)

Explanation:

\(\displaystyle 2x+6=20\) Isolate \(\displaystyle 2x\) by subtracting both sides by \(\displaystyle 6\).

\(\displaystyle 2x=14\) Divide both sides by \(\displaystyle 2\) to just get \(\displaystyle x\).

\(\displaystyle x=7\)

Example Question #52 : How To Solve Two Step Equations

Solve for \(\displaystyle x.\)

\(\displaystyle 3x-6=21\)

Possible Answers:

\(\displaystyle 27\)

\(\displaystyle 18\)

\(\displaystyle 5\)

 

\(\displaystyle 9\)

\(\displaystyle 6\)

Correct answer:

 

\(\displaystyle 9\)

Explanation:

\(\displaystyle 3x-6=21\) Isolate \(\displaystyle 3x\) by adding both sides by \(\displaystyle 6\).

\(\displaystyle 3x=27\) Divide both sides by \(\displaystyle 3\) to just get \(\displaystyle x\).

\(\displaystyle x=9\)

Example Question #53 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle 5x+7=-3\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle -2\)

\(\displaystyle -10\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle -2\)

Explanation:

\(\displaystyle 5x+7=-3\) Isolate \(\displaystyle 5x\) by subtracting both sides by \(\displaystyle 7\).

\(\displaystyle 5x=-10\) Divide both sides by \(\displaystyle 5\) to just get \(\displaystyle x\).

\(\displaystyle x=-2\)

Example Question #53 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{x+3}{6}=5\)

Possible Answers:

\(\displaystyle 24\)

\(\displaystyle 30\)

\(\displaystyle 16\)

\(\displaystyle 27\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 27\)

Explanation:

\(\displaystyle \frac{x+3}{6}=5\) Cross-multiply.

\(\displaystyle x+3=30\) Subtract both sides by \(\displaystyle 3\) to just get \(\displaystyle x\).

\(\displaystyle x=27\)

Example Question #55 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{2x}{4}=9\)

Possible Answers:

\(\displaystyle 12\)

\(\displaystyle 36\)

\(\displaystyle 18\)

\(\displaystyle -2\)

\(\displaystyle -18\)

Correct answer:

\(\displaystyle 18\)

Explanation:

\(\displaystyle \frac{2x}{4}=9\) Cross-multiply.

\(\displaystyle 2x=36\) Divide both sides by \(\displaystyle 2\) to just get \(\displaystyle x\).

\(\displaystyle x=18\)

Example Question #51 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{16}{x}=4\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 16\)

\(\displaystyle 12\)

\(\displaystyle 8\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 4\)

Explanation:

\(\displaystyle \frac{16}{x}=4\) Cross-multiply.

\(\displaystyle 4x=16\) Divide both sides by \(\displaystyle 4\) to just get \(\displaystyle x\).

\(\displaystyle x=4\)

Example Question #51 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{3}{x}=2\)

Possible Answers:

\(\displaystyle \frac{3}{2}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle \frac{2}{3}\)

Correct answer:

\(\displaystyle \frac{3}{2}\)

Explanation:

\(\displaystyle \frac{3}{x}=2\) Cross-multiply.

\(\displaystyle 2x=3\) Divide both sides by \(\displaystyle 2\) to just get \(\displaystyle x\).

\(\displaystyle x=\frac{3}{2}\)

Example Question #54 : How To Solve Two Step Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{x}{4}-3=5\)

Possible Answers:

\(\displaystyle 32\)

\(\displaystyle 8\)

\(\displaystyle 24\)

\(\displaystyle 16\)

\(\displaystyle 64\)

Correct answer:

\(\displaystyle 32\)

Explanation:

\(\displaystyle \frac{x}{4}-3=5\) Add \(\displaystyle 3\) to both sides. 

\(\displaystyle \frac{x}{4}=8\) Cross-multiply.

\(\displaystyle x=18\)

Example Question #591 : Linear Equations

Solve for \(\displaystyle x\).

\(\displaystyle \frac{n}{10}+2=4\)

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 20\)

\(\displaystyle -5\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{x}{10}+2=4\) Subtract \(\displaystyle 2\) to both sides. 

\(\displaystyle \frac{x}{10}=2\) Cross-multiply.

\(\displaystyle x=20\)

Example Question #591 : Algebra 1

Solve for \(\displaystyle x\).

\(\displaystyle 3-\frac{x}{7}=-2\)

Possible Answers:

\(\displaystyle -14\)

\(\displaystyle 35\)

\(\displaystyle -10\)

\(\displaystyle -21\)

\(\displaystyle -35\)

Correct answer:

\(\displaystyle 35\)

Explanation:

\(\displaystyle 3-\frac{x}{7}=-2\) Subtract \(\displaystyle 3\) to both sides. Since wee subtract two negative numbers, we treat as addition. 

\(\displaystyle -\frac{x}{7}=-5\) Cross-multiply. Since we multiplying two negative numbers, answer should be positive. 

\(\displaystyle x=35\)

Learning Tools by Varsity Tutors