Algebra 1 : Linear Equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #651 : Linear Equations

Solve for \displaystyle x.

\displaystyle \frac{1}{4}x+2=-12

Possible Answers:

\displaystyle x=-\frac{7}{2}

\displaystyle x=12

\displaystyle x=-64

\displaystyle x=-56

Correct answer:

\displaystyle x=-56

Explanation:

\displaystyle \frac{1}{4}x+2=-12

Subtract \displaystyle 2 from both sides.

\displaystyle \frac{1}{4}x=-14

Multiply both sides by \displaystyle 4.

\displaystyle x=-56

Example Question #651 : Linear Equations

Solve for \displaystyle x.

\displaystyle -2x+5=13

Possible Answers:

\displaystyle x=-4

\displaystyle x=-9

\displaystyle x=4

\displaystyle x=-16

Correct answer:

\displaystyle x=-4

Explanation:

\displaystyle -2x+5=13

Subtract \displaystyle 5 from both sides.

\displaystyle -2x=8

Divide both sides by \displaystyle -2.

\displaystyle x=-4

Example Question #652 : Linear Equations

Solve for \displaystyle x:

\displaystyle 12-4x=-16

Possible Answers:

\displaystyle x=-8

\displaystyle x=-1

\displaystyle x=4

\displaystyle x=7

Correct answer:

\displaystyle x=7

Explanation:

\displaystyle 12-4x=-16

Subtract \displaystyle 12 from both sides.

\displaystyle -4x=-28

Divide both sides by \displaystyle -4.

\displaystyle x=7

Example Question #653 : Linear Equations

Solve for \displaystyle x:

\displaystyle 3x-9=24

Possible Answers:

\displaystyle x=15

\displaystyle x=5

\displaystyle x=10

\displaystyle x=11

Correct answer:

\displaystyle x=11

Explanation:

\displaystyle 3x-9=24

Add \displaystyle 9 to both sides.

\displaystyle 3x=33

Divide both sides by \displaystyle 3.

\displaystyle x=11

Example Question #654 : Linear Equations

Solve for \displaystyle x:

\displaystyle 2x-5=7

Possible Answers:

\displaystyle x=6

\displaystyle x=1

\displaystyle x=2

\displaystyle x=4

Correct answer:

\displaystyle x=6

Explanation:

\displaystyle 2x-5=7

Add \displaystyle 5 to both sides.

\displaystyle 2x=12

Divide both sides by \displaystyle 2.

\displaystyle x=6

Example Question #655 : Linear Equations

Solve for \displaystyle x:

\displaystyle \frac{1}{5}x-2=2

Possible Answers:

\displaystyle x=4

\displaystyle x=20

\displaystyle x=0

\displaystyle x=25

Correct answer:

\displaystyle x=20

Explanation:

\displaystyle \frac{1}{5}x-2=2

Add \displaystyle 2 to both sides.

\displaystyle \frac{1}{5}x=4

Multiply both sides by \displaystyle 5.

\displaystyle x=20

Example Question #656 : Linear Equations

Solve for \displaystyle x:

\displaystyle 7-6x=49

Possible Answers:

\displaystyle x=-6

\displaystyle x=\frac{53}{6}

\displaystyle x=-7

\displaystyle x=7

Correct answer:

\displaystyle x=-7

Explanation:

\displaystyle 7-6x=49

Subtract \displaystyle 7 from both sides.

\displaystyle -6x=42

Divide both sides by \displaystyle -6.

\displaystyle x=-7

Example Question #657 : Linear Equations

Solve for \displaystyle x:

\displaystyle 9x-10=80

Possible Answers:

\displaystyle x=10

\displaystyle x=9

\displaystyle x=12

\displaystyle x=8

Correct answer:

\displaystyle x=10

Explanation:

\displaystyle 9x-10=80

Add \displaystyle 10 to both sides.

\displaystyle 9x=90

Divide both sides by \displaystyle 9.

\displaystyle x=10

Example Question #658 : Linear Equations

Solve for \displaystyle x:

\displaystyle 5-3x=35

Possible Answers:

\displaystyle x=10

\displaystyle x=-\frac{40}{3}

\displaystyle x=2

\displaystyle x=-10

Correct answer:

\displaystyle x=-10

Explanation:

\displaystyle 5-3x=35

Subtract \displaystyle 5 from both sides.

\displaystyle -3x=30

Divide both sides by \displaystyle -3.

\displaystyle x=-10

Example Question #659 : Linear Equations

Solve for \displaystyle x:

\displaystyle \frac{1}{5}x-2=-2

Possible Answers:

\displaystyle x=0

\displaystyle x=-10

\displaystyle x=2

\displaystyle x=20

Correct answer:

\displaystyle x=0

Explanation:

\displaystyle \frac{1}{5}x-2=-2

Add \displaystyle 2 to both sides.

\displaystyle \frac{1}{5}x=0

Multiply both sides by \displaystyle 5.

\displaystyle x=0

Learning Tools by Varsity Tutors