Algebra 1 : Real Numbers

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #151 : Real Numbers

Solve.

\displaystyle 6+9

Possible Answers:

\displaystyle 12

\displaystyle 54

\displaystyle 69

\displaystyle 15

\displaystyle 96

Correct answer:

\displaystyle 15

Explanation:

This is just a simple addition problem. The sum of \displaystyle 6 and \displaystyle 9 is \displaystyle 15.

Example Question #152 : Real Numbers

Solve.

\displaystyle 12+13

Possible Answers:

\displaystyle 26

\displaystyle 25

\displaystyle 52

\displaystyle 32

\displaystyle 18

Correct answer:

\displaystyle 25

Explanation:

This is just a simple addition problem. The sum of \displaystyle 12 and \displaystyle 13 is \displaystyle 25.

Example Question #153 : Real Numbers

Solve.

\displaystyle -3+5

Possible Answers:

\displaystyle -2

\displaystyle 2

\displaystyle 8

\displaystyle 4

\displaystyle -8

Correct answer:

\displaystyle 2

Explanation:

There is a negative sign present. When that happens, we compare the numbers. Since \displaystyle 5 is greater than \displaystyle 3 and is positive, our answer is positive. We treat the problem as a subtraction problem. The answer is \displaystyle 2.

Example Question #154 : Integer Operations

Solve.

\displaystyle -6+3

Possible Answers:

\displaystyle 2

\displaystyle 9

\displaystyle -9

\displaystyle 3

\displaystyle -3

Correct answer:

\displaystyle -3

Explanation:

There is a negative sign present. When that happens, we compare the numbers. Since \displaystyle 6 is greater than \displaystyle 3 and is negative, our answer is negative. We treat the problem as a subtraction problem. The answer is \displaystyle -3.

Example Question #154 : Real Numbers

Solve.

\displaystyle -1234+1234

Possible Answers:

\displaystyle 2468

\displaystyle 1234

\displaystyle 0

\displaystyle -2468

\displaystyle -1234

Correct answer:

\displaystyle 0

Explanation:

There is a negative sign present. When that happens, we compare the numbers. \displaystyle 1234 is seen as both a positive and negative number. This means the value are the same but will cancel out to give us an answer of \displaystyle 0.

Example Question #155 : Real Numbers

Solve.

\displaystyle -12+(-11)

Possible Answers:

\displaystyle -1

\displaystyle 23

\displaystyle -23

\displaystyle 1

\displaystyle 10

Correct answer:

\displaystyle -23

Explanation:

When a plus and minus are together, the sign changes to negative. When adding two negative numbers, we treat as addition but keep the minus sign in the end. The answer is \displaystyle -23.

Example Question #31 : How To Add Integers

Solve.

\displaystyle -1+(-3)+(-4)

Possible Answers:

\displaystyle 1

\displaystyle -8

\displaystyle 0

\displaystyle -4

\displaystyle -2

Correct answer:

\displaystyle -8

Explanation:

When a plus and minus are together, the sign changes to negative. We add from left to right. When adding two negative numbers, we treat as addition but keep the minus sign in the end. We then have \displaystyle -4. Then same rules apply and when we add another \displaystyle -4, we get \displaystyle -8.

Example Question #32 : How To Add Integers

Solve.

\displaystyle -15+(-4)+(-9)

Possible Answers:

\displaystyle 2

\displaystyle -11

\displaystyle 13

\displaystyle -28

\displaystyle -2

Correct answer:

\displaystyle -28

Explanation:

When a plus and minus are together, the sign changes to negative. We add from left to right. When adding two negative numbers, we treat as addition but keep the minus sign in the end. We then have \displaystyle -19. Then same rules apply and when we add another \displaystyle -9, we get \displaystyle -28.

Example Question #33 : How To Add Integers

Solve.

\displaystyle 6+6+(-13)

Possible Answers:

\displaystyle 16

\displaystyle -11

\displaystyle 25

\displaystyle -1

\displaystyle 1

Correct answer:

\displaystyle -1

Explanation:

First, let's work from left to right. We have simple addition which gives us \displaystyle 12. Next, a plus and minus sign make a minus sign. Since \displaystyle 13 is greater than \displaystyle 12 and is negative, our answer is negative. We treat as a subtraction problem and get an answer of \displaystyle -1.

Example Question #34 : How To Add Integers

Solve.

\displaystyle -7+15+(-6) 

Possible Answers:

\displaystyle -8

\displaystyle 14

\displaystyle -2

\displaystyle 2

\displaystyle -6

Correct answer:

\displaystyle 2

Explanation:

First, let's work from left to right. A plus and minus sign make a minus sign. Since \displaystyle 15 is greater than \displaystyle 7 and is positive, our answer is positive. We treat as a subtraction problem and get an answer of \displaystyle 8. Then, \displaystyle 8 is greater than \displaystyle 6 and is positive, our answer is positive. Our final answer is \displaystyle 2.

Learning Tools by Varsity Tutors