Algebra 1 : Variables

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Solution To A Binomial Problem

Solve for \displaystyle x in terms of \displaystyle y:

\displaystyle \frac{4}{3}x-3=\frac{2}{9}y

Possible Answers:

\displaystyle x=\frac{8}{27}y+3

\displaystyle x=\frac{1}{6}y-\frac{9}{4}

\displaystyle x=\frac{-8}{27}y+3

\displaystyle x=\frac{8}{27}y-3

\displaystyle x=\frac{1}{6}y+\frac{9}{4}

Correct answer:

\displaystyle x=\frac{1}{6}y+\frac{9}{4}

Explanation:

First, isolate X onto one side of the equation:

\displaystyle \frac{4}{3}X-3=\frac{2}{9}Y

        \displaystyle +3         \displaystyle +3

\displaystyle \frac{4}{3}X=\frac{2}{9}Y+3

Next, divide both sides of the equation by 4/3:

\displaystyle \frac{4}{3}\div \frac{4}{3}X=\frac{4}{3}\div \frac{2}{9}Y+\frac{4}{3}\div \frac{3}{1}

\displaystyle \frac{3}{4}\cdot \frac{4}{3}X=\frac{3}{4}\cdot \frac{2}{9}Y+\frac{3}{4}\cdot \frac{3}{1}

\displaystyle X=\frac{6}{36}Y+\frac{9}{4}

When simplified, your answer should be:

\displaystyle X=\frac{1}{6}Y+\frac{9}{4}

 

 

Example Question #1 : How To Find The Solution To A Binomial Problem

Solve for \displaystyle x

\displaystyle -1 = 6 + x

Possible Answers:

\displaystyle -7

\displaystyle 7

\displaystyle -5

\displaystyle 0

\displaystyle 5

Correct answer:

\displaystyle -7

Explanation:

\displaystyle -1 = 6 + x

\displaystyle -1-6 = 6+x-6

\displaystyle -7 = x

Example Question #1 : How To Find The Solution To A Binomial Problem

Solve for \displaystyle x

\displaystyle 3 = -6 + x

Possible Answers:

\displaystyle 3

\displaystyle -2

\displaystyle -3

\displaystyle 9

\displaystyle -9

Correct answer:

\displaystyle 9

Explanation:

\displaystyle \\3 = -6 + x \\3 + 6 = -6 + x + 6 \\9 = x

Example Question #2 : How To Find The Solution To A Binomial Problem

Solve for \displaystyle x

\displaystyle 3 = 2 - x

Possible Answers:

\displaystyle -1

None of the other answers.

\displaystyle 5

\displaystyle -5

\displaystyle 1

Correct answer:

\displaystyle -1

Explanation:

\displaystyle \\3 = 2 - x \\3 - 2 = 2 - x - 2\\ 1 = -x(-1) = x

Example Question #3 : How To Find The Solution To A Binomial Problem

Solve for \displaystyle x

\displaystyle 19 = 7 + x

Possible Answers:

\displaystyle -26

\displaystyle 12

\displaystyle -12

\displaystyle 26

\displaystyle 7

Correct answer:

\displaystyle 12

Explanation:

\displaystyle \\19 = 7 + x \\ 19 - 7 = 7 + x -7 \\ 12 = x

Example Question #301 : Variables

Solve for \displaystyle x.

\displaystyle -9 = 82 + x

Possible Answers:

\displaystyle -91

\displaystyle 91

None of the other answers.

\displaystyle 72

\displaystyle 73

Correct answer:

\displaystyle -91

Explanation:

\displaystyle \\-9 = 82 + x \\ -9 - 82 = 82 + x - 82 \\-91 = x

Example Question #302 : Variables

Solve for \displaystyle x

\displaystyle 1 = -3 + x

Possible Answers:

\displaystyle 1

\displaystyle 4

\displaystyle 3

None of the other answers.

\displaystyle 0

Correct answer:

\displaystyle 4

Explanation:

\displaystyle \\1 = -3 + x \\1 + 3 = -3 + x + 3\\ 4 = x

Example Question #2 : Solving Rational Expressions

Simplify:

 

\displaystyle \frac{2x-3}{3-2x}

Possible Answers:

\displaystyle 1

\displaystyle \frac{3}{2}

\displaystyle \frac{2}{3}

\displaystyle 0

\displaystyle -1

Correct answer:

\displaystyle -1

Explanation:

Factor out \displaystyle -1 from the numerator which gives us

Hence we get the following

which is equal to \displaystyle -1

Example Question #1 : Factoring Rational Expressions

Simplify:

 

\displaystyle \frac{x+3}{x^{2}+6x+9}

 

Possible Answers:

\displaystyle \left ( x+3 \right )^{2}

\displaystyle \left ( x-3 \right )

\displaystyle \left ( x+3 \right )

\displaystyle \frac{1}{x+3}

\displaystyle \frac{1}{\left ( x+3 \right )^{2}}

Correct answer:

\displaystyle \frac{1}{x+3}

Explanation:

If we factors the denominator we get

\displaystyle \left ( x+3 \right )^{2}

Hence the rational expression becomes equal to

 

\displaystyle \frac{\left ( x+3 \right )}{\left ( x+3 \right )^{2}}

 

which is equal to \displaystyle \frac{1}{\left ( x+3 \right )}

Example Question #303 : Variables

 

 

Which of the following fractions is NOT equivalent to \displaystyle - \frac{x-5}{2x + 3} ?

 

Possible Answers:

\displaystyle \frac{x-5}{-2x-3}

\displaystyle \frac{x+5}{2x + 3}

\displaystyle \frac{-x+5}{2x+3}

Correct answer:

\displaystyle \frac{x+5}{2x + 3}

Explanation:

We know that \displaystyle -\frac{a}{b} is equivalent to \displaystyle \frac{-a}{b} or \displaystyle \frac{a}{-b}.

By this property, there is no way to get \displaystyle \frac{x+5}{2x+3} from \displaystyle -\frac{x-5}{2x+3}.

Therefore the correct answer is \displaystyle \frac{x+5}{2x+3}.

Learning Tools by Varsity Tutors