Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #52 : Solving Quadratic Equations

Which of the following is a possible root of \displaystyle y=2x^2-3x+20?  

Possible Answers:

\displaystyle \textup{None of the given answers are possible roots.}

\displaystyle -\frac{5}{2}

\displaystyle \frac{3- i\sqrt{151}}{2}

\displaystyle \frac{3- i\sqrt{151}}{4}

\displaystyle \frac{3+i\sqrt{71}}{2}

Correct answer:

\displaystyle \frac{3- i\sqrt{151}}{4}

Explanation:

Use the quadratic equation to solve for the roots.

\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Substitute the values of the polynomial \displaystyle y=ax^2+bx+c into the equation.

\displaystyle y=2x^2-3x+20

\displaystyle x=\frac{-(-3)\pm\sqrt{(-3)^2-4(2)(20)}}{2(2)}

Simplify the quadratic formula.

\displaystyle x=\frac{+3\pm\sqrt{9-160}}{4} = \frac{3\pm\sqrt{-151}}{4}

Since we have a negative discriminant, we will have complex roots even though there are no real roots.

The roots are:  \displaystyle x=\frac{3\pm i\sqrt{151}}{4}

One of the possible roots given is:  \displaystyle \frac{3- i\sqrt{151}}{4}

Example Question #55 : Solving Quadratic Equations

Find the roots of this quadratic equation: \displaystyle 2x^2+3x-14

Possible Answers:

This equation has complex roots.

None of these.

\displaystyle x=7

\displaystyle x=-\frac{2}{7}

\displaystyle x=2

\displaystyle x=-\frac{7}{2}

\displaystyle x=1

\displaystyle x=\frac{2}{7}

Correct answer:

\displaystyle x=2

\displaystyle x=-\frac{7}{2}

Explanation:

\displaystyle 2x^2+3x-14

There are multiple methods to solve quadratics. Use whichever is easiest for the problem.

Solve by factoring:

\displaystyle (2x+7)(x-2)

What numbers will multiply to get \displaystyle 2x^2 and what two numbers will multiply to get -14?

To solve for the roots, set the factors equal to 0 and solve:

\displaystyle 2x+7=0\rightarrow \mathbf{x=-\frac{7}{2}}

\displaystyle (x-2)=0\rightarrow \boldsymbol{x=2}

Example Question #52 : Finding Roots

What are the roots of \displaystyle x^2-x-6?

Possible Answers:

\displaystyle x=-3,-2

\displaystyle x=0,-2

\displaystyle x=3,-2

\displaystyle x=3

\displaystyle x=3,2

Correct answer:

\displaystyle x=3,-2

Explanation:

To find the roots, or solutions, of this quadratic equation, first factor it.

Recall that when a function is in the \displaystyle ax^2+bx+c form, the factors of a and c when multiplied and added together must equal b.

First, identify factors of 6 that could equal -1. Y

ou have to think of your positive and negative signs here. Remember that \displaystyle 3\cdot 2=6 and you need to have one positive and one negative number to get -6.

Therefore, after factoring, you should get: 

\displaystyle (x-3)(x+2).

Then, set each of those expressions equal to 0.

Therefore, your roots are:

\displaystyle x=3,-2.

Example Question #1511 : Algebra Ii

What are the roots of \displaystyle (4x-2)(x-3)=0?

Possible Answers:

\displaystyle x=-\frac{1}{2}, 3

\displaystyle x=0, 3

\displaystyle x=\frac{1}{2}, 3

\displaystyle x=\frac{1}{2}, 1

\displaystyle x=\frac{1}{2}, -3

Correct answer:

\displaystyle x=\frac{1}{2}, 3

Explanation:

Since this function is already factored and equal to 0, you can just set each expression equal to 0 to get your roots.

\displaystyle 4x-2=0; x=\frac{1}{2}

and

\displaystyle x-3=0, x=3.

Example Question #58 : Solving Quadratic Equations

Find a root for the parabolic function:  \displaystyle y=-2(3-3x)^2-3x

Possible Answers:

\displaystyle \frac{11}{3}+\frac{i\sqrt{23}}{3}

\displaystyle \frac{11}{12}- \frac{i\sqrt{23}}{12}

\displaystyle 11+ \frac{i\sqrt{23}}{2}

\displaystyle \frac{11}{6}- \frac{i\sqrt{23}}{6}

\displaystyle \frac{11}{18}+\frac{i\sqrt{23}}{18}

Correct answer:

\displaystyle \frac{11}{12}- \frac{i\sqrt{23}}{12}

Explanation:

The equation will need to be simplified to its standard form.

Simplify this equation by using the FOIL method to expand \displaystyle (3-3x)^2.

\displaystyle (3-3x)(3-3x) = 3(3)+3(-3x)+(-3x)(3)+(-3x)(-3x)

Simplify the terms.

\displaystyle (3-3x)(3-3x) = 9-18x+9x^2

The equation becomes:

\displaystyle y=-2(9-18x+9x^2)-3x

Distribute the negative two through the parentheses.

\displaystyle y=-18+36x-18x^2-3x

Combine like terms.

The equation in standard for becomes:  \displaystyle y=-18x^2+33x-18

The standard form for a polynomial is:  \displaystyle y=ax^2+bx+c

Write the quadratic equation.

\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Substitute the coefficients corresponding to the equation in standard form.

\displaystyle x=\frac{-33\pm\sqrt{33^2-4(-18)(-18)}}{2(-18)} =\frac{-33\pm\sqrt{-207}}{-36}

Simplify the radical.  The roots will be imaginary.

\displaystyle x=\frac{-33\pm\sqrt{-207}}{-36} = \frac{33}{36}\pm \frac{\sqrt{-1}\cdot \sqrt{9}\cdot \sqrt{23}}{36}

Simplify the fractions and replace \displaystyle \sqrt{-1} with \displaystyle i.

\displaystyle x=\frac{11}{12}\pm \frac{3i\sqrt{23}}{36} = \frac{11}{12}\pm \frac{i\sqrt{23}}{12}

The answer is:  \displaystyle \frac{11}{12}- \frac{i\sqrt{23}}{12}

Example Question #52 : Solving Quadratic Equations

Find the roots for the quadratic equation \displaystyle y=2x^2 + 5x - 12

Possible Answers:

\displaystyle 8, -3

\displaystyle \frac{2}{3} , 4

\displaystyle -4, \frac{2}{3}

\displaystyle 3, -4

\displaystyle 1.5, -4

Correct answer:

\displaystyle 1.5, -4

Explanation:

You can solve this quadratic in many different ways, including by graphing or using the quadratic formula. This particular quadratic can be factored:

\displaystyle 2x ^2 + 5 x - 12 we're looking for 2 numbers that add to 5 and multiply to \displaystyle -12 \cdot 2 = -24

The numbers that work are 8 and -3:

\displaystyle 2x^2 + 8x - 3x - 12 continue factoring

\displaystyle 2x(x+4) + -3 (x+4)

The factors are \displaystyle (x+4) and \displaystyle (2x-3). Set each factor equal to zero:

\displaystyle x+4 = 0

\displaystyle x=-4

 

\displaystyle 2x-3 = 0

\displaystyle 2x = 3

\displaystyle x=1.5

Example Question #51 : Finding Roots

Find the roots of the quadratic equation \displaystyle y=4x^2 +17x -77

Possible Answers:

\displaystyle \frac{11}{7} , 7

\displaystyle -7, 3

\displaystyle -11, 28

\displaystyle 2.75, -7

Correct answer:

\displaystyle 2.75, -7

Explanation:

You can solve this quadratic equation in many different ways, including by graphing or factoring. You can also use the quadratic formula:

\displaystyle x = \frac{-17 \pm \sqrt{289 - 4(4)(-77)}}{2\cdot4} = \frac{-17 \pm \sqrt{1,521}}{8} = \frac{-17 \pm39}{8}

This will give us two answers:

\displaystyle \frac{-17 + 39 }{ 8 } = 2.75

\displaystyle \frac{-17-39}{8 } = -7

Example Question #61 : Finding Roots

Find the roots of the quadratic equation \displaystyle y=6x^2 -19x + 10

Possible Answers:

\displaystyle -4, \frac{2}{3}

\displaystyle 1.5, 2.5

\displaystyle -4, -15

\displaystyle \frac{2}{3} , 0.4

\displaystyle \frac{2}{3} , 2.5

Correct answer:

\displaystyle \frac{2}{3} , 2.5

Explanation:

This quadratic equation can be solved in several ways, including the quadratic equation or by graphing. It can also be solved by factoring:

For this quadratic, we are looking for 2 numbers that add to -19 and multiply to 6x10=60. The numbers satisfying these conditions are -4 and -15:

\displaystyle 6x^2 -4x - 15x + 10 continue factoring

\displaystyle 2x(3x - 2 ) - 5 (3x - 2 )

The factors are \displaystyle (2x -5 ) and \displaystyle (3x - 2 ). Set each equal to zero:

\displaystyle 2x-5=0

\displaystyle 2x = 5

\displaystyle x=2.5

 

\displaystyle 3x-2 = 0

\displaystyle 3x = 2

\displaystyle x=\frac{2}{3}

Example Question #381 : Intermediate Single Variable Algebra

Find the roots of the quadratic equation \displaystyle y=2x^2 -5x -25

Possible Answers:

\displaystyle -5, 2.5

\displaystyle 5, - 2.5

\displaystyle -10, 5

\displaystyle 5, 2.5

Correct answer:

\displaystyle 5, - 2.5

Explanation:

This quadratic can be solved in several different ways, including by graphing or factoring. You can also use the quadratic formula:

\displaystyle x= \frac{ 5 \pm \sqrt{ 25 - 4(2)(-25)}}{2 \cdot 2 } = \frac{5 \pm \sqrt{225}}{4} = \frac{5 \pm 15}{4}

This gives us two answers:

\displaystyle \frac{5 + 15 } {4} = \frac{20}{4} = 5

\displaystyle \frac{5-15}{4} = \frac{-10}{4} = -2.5

Example Question #63 : Finding Roots

Given the equation \displaystyle y=4x^2-4x-3, find a possible root.

Possible Answers:

\displaystyle \frac{1}{8}

\displaystyle -2

\displaystyle -\frac{1}{4}

\displaystyle \frac{2}{3}

\displaystyle -\frac{1}{2}

Correct answer:

\displaystyle -\frac{1}{2}

Explanation:

Use the quadratic equation to determine roots of a parabolic function.

The quadratic formula is:

\displaystyle x= \frac{-b\pm\sqrt{b^2-4ac}}{2a}

The equation \displaystyle y=4x^2-4x-3 in the form of \displaystyle y=ax^2+bx+c.

Substitute the known coefficients.

\displaystyle x= \frac{-(-4)\pm\sqrt{(-4)^2-4(4)(-3)}}{2(4)}

Simplify the equation.

\displaystyle x= \frac{4\pm\sqrt{16+48}}{8} = \frac{4\pm\sqrt{64}}{8} = \frac{4\pm8}{8}

The fraction can be broken into two.

\displaystyle \frac{4+8}{8} = \frac{12}{8}=\frac{3}{2}

\displaystyle \frac{4-8}{8} = \frac{-4}{8}= -\frac{1}{2}

Either \displaystyle -\frac{1}{2} or \displaystyle \frac{3}{2} is a possible root.

The answer is: \displaystyle -\frac{1}{2}

Learning Tools by Varsity Tutors