Algebra II : Functions and Graphs

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Graphing Polynomial Functions

\displaystyle List\ the\ x-intercepts\ for\ the\ function\ below:

\displaystyle f(x)=(x-1)(x+2)(x-5)^2

Possible Answers:

\displaystyle x=-1, x=2, x=\pm 5

\displaystyle x=1, x=-2, x=\pm 5

\displaystyle x=1, x=-2, x=5

\displaystyle x=-1, x=2, x=-5

Correct answer:

\displaystyle x=1, x=-2, x=5

Explanation:

\displaystyle To\ find\ the\ x-intercepts\ plug\ in\ zero\ for\ f(x)

\displaystyle f(x)=(x-1)(x+2)(x-5)^2

\displaystyle 0=(x-1)(x+2)(x-5)^2

Then set each factor equal to zero, if any of the ( ) equal zero, then the whole thing will equal zero because of the zero product rule. 

\displaystyle x-1=0\ \ \ \ \ \ \ \ \ x+2=0\ \ \ \ \ \ \ \ \ \ \ (x-5)^2=0

\displaystyle x=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=-2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=5

 

 

Example Question #591 : Functions And Graphs

\displaystyle P(x) is a polynomial function. \displaystyle P(0) = 5\displaystyle P (1) = 15.

True or false: By the Intermediate Value Theorem, \displaystyle P(x) cannot have a zero on the interval \displaystyle (0,1 ).

Possible Answers:

False

True

Correct answer:

False

Explanation:

As a polynomial function, the graph of \displaystyle P(x) is continuous. By the Intermediate Value Theorem, if \displaystyle P(a) < M < P(b) or \displaystyle P(b) < M < P(a), then there must exist a value \displaystyle c \in (a,b) such that \displaystyle P(c)= M

Set \displaystyle a = 0 and \displaystyle b= 1. It is not true that \displaystyle P(0) < 0< P(1), so the Intermediate Value Theorem does not prove that there exists \displaystyle c \in (0,1 ) such that \displaystyle P(c)= 0. However, it does not disprove that such a value exists either. For example, observe the graphs below:

 Ivt

Both are polynomial graphs fitting the given conditions, but the only the equation graphed at right has a zero on \displaystyle c \in (0,1).

Example Question #42 : Polynomial Functions

How many \displaystyle x-intercepts does the graph of the function

\displaystyle f(x) = x^{2} + 7x - 9

have?

Possible Answers:

One

Zero

Two

Correct answer:

Two

Explanation:

The graph of a quadratic function \displaystyle f(x) has an \displaystyle x-intercept at any point \displaystyle (x,0 ) at which \displaystyle f(x) = 0, so we set the quadratic expression equal to 0:

\displaystyle x^{2} + 7x - 9 = 0

Since the question simply asks for the number of \displaystyle x-intercepts, it suffices to find the discriminant of the equation and to use it to determine this number. The discriminant of the quadratic equation 

\displaystyle ax^{2} + bx+ c = 0

is 

\displaystyle b^{2} - 4ac.

Set \displaystyle a = 1, b= 7, c = -9, and evaluate:

\displaystyle b^{2} - 4ac = 7^{2} - 4 (1)(-9)= 49 - (-36) =49 + 36 = 85

The discriminant is positive, so the \displaystyle f(x) has two real zeroes - and its graph has two \displaystyle x-intercepts.

Example Question #11 : Graphing Polynomial Functions

The vertex of the graph of the function 

\displaystyle f(x)= -4x^{2}+ 12x - 9

appears ________

Possible Answers:

in Quadrant III.

on an axis.

in Quadrant II.

in Quadrant I.

in Quadrant IV.

Correct answer:

on an axis.

Explanation:

The graph of the quadratic function \displaystyle f(x) = ax^{2} + bx+ c is a parabola with its vertex at the point with coordinates

\displaystyle \left ( -\frac{b}{2a}, f \left (-\frac{b}{2a} \right ) \right ).

Set \displaystyle a = -4, b = 12; the \displaystyle x-coordinate is 

\displaystyle -\frac{b}{2a} = - \frac{12}{2 \cdot (-4)} = - \frac{12}{-8} = \frac{3}{2} = 1\frac{1}{2}

Evaluate \displaystyle f \left ( \frac{3}{2} \right ) by substitution:

\displaystyle f \left ( \frac{3}{2} \right )= -4 \left ( \frac{3}{2} \right )^{2}+ 12 \left ( \frac{3}{2} \right ) - 9

\displaystyle = -4 \left ( \frac{9}{4} \right ) + 12 \left ( \frac{3}{2} \right ) - 9

\displaystyle = -9 +18 - 9

\displaystyle = 0

The vertex has 0 as its \displaystyle y-coordinate; it is therefore on an axis.

Example Question #43 : Polynomial Functions

\displaystyle P(x) is a polynomial function. \displaystyle P(0) = -5\displaystyle P (1) = 17.

True, false, or undetermined: \displaystyle P(x) has a zero on the interval \displaystyle (0,1 ).

Possible Answers:

Undetermined

True

False

Correct answer:

True

Explanation:

As a polynomial function, the graph of \displaystyle P(x) is continuous. By the Intermediate Value Theorem (IVT), if \displaystyle P(a) < M < P(b) or \displaystyle P(b) < M < P(a), then there must exist a value \displaystyle c \in (a,b) such that \displaystyle P(c)= M.

Setting \displaystyle M = 0, a = 0, b=1,  and examining the first condition, the above becomes:

if \displaystyle P(0) < 0 < P(1), then there must exist a value \displaystyle c \in (0, 1) such that \displaystyle P(c)= 0 - or, restated, \displaystyle P(x) must have a zero on the interval \displaystyle (0,1 ). Since \displaystyle P(0) = -5\displaystyle P (1) = 17. the condition holds, and by the IVT, it follows that \displaystyle P(x) has a zero on \displaystyle (0,1 ).

Example Question #591 : Functions And Graphs

\displaystyle P(x) is a polynomial function. The graph of \displaystyle P(x) has no \displaystyle x-intercepts; its \displaystyle y-intercept of the graph is at \displaystyle (0, 17).

True or false: By the Intermediate Value Theorem, \displaystyle P(x) has no negative values.

Possible Answers:

True

False

Correct answer:

True

Explanation:

As a polynomial function, the graph of \displaystyle P(x) is continuous. By the Intermediate Value Theorem, if \displaystyle P(a) < M < P(b) or \displaystyle P(b) < M < P(a), then there must exist a value \displaystyle c \in (a,b) such that \displaystyle P(c)= M.

Setting \displaystyle a= 0 and \displaystyle M = 0, assuming for now that \displaystyle b > 0, and looking only at the second condition, this statement becomes: If \displaystyle P(b) < 0 < P(a), then there must exist a value \displaystyle c \in (0, b) such that \displaystyle P(c)= 0 - or, equivalently, \displaystyle P(x) must have a zero on \displaystyle (0, b).

However, the conclusion of this statement is false: \displaystyle P(x) has no zeroes at all. Therefore, \displaystyle P(b) < 0 is false, and \displaystyle P(x) has no negative values for any \displaystyle x >0. By similar reasoning, \displaystyle P(x) has no negative values for any \displaystyle x< 0. Therefore, by the IVT, by way of its contrapositive, we have proved that \displaystyle P(x) is positive everywhere.

Example Question #2 : Graphing Other Functions

Screen_shot_2014-12-24_at_2.27.32_pm

Which of the following is an equation for the above parabola?

Possible Answers:

\displaystyle y=\frac{1}{2}(x+3)(x-2)

\displaystyle y=(x-2)(x+3)

\displaystyle y=(x-3)(x+2)

\displaystyle y=\frac{1}{2}(x-3)(x+2)

Correct answer:

\displaystyle y=\frac{1}{2}(x-3)(x+2)

Explanation:

The zeros of the parabola are at \displaystyle 3 and \displaystyle -2, so when placed into the formula 

\displaystyle y=C(x-z_{1})(x-z_{2})

each of their signs is reversed to end up with the correct sign in the answer. The coefficient can be found by plugging in any easily-identifiable, non-zero point to the above formula. For example, we can plug in \displaystyle (4,3) which gives 

\displaystyle 3=C(4-3)(4+2)  

\displaystyle 6C=3

\displaystyle C=\frac{1}{2}

Example Question #11 : Graphing Polynomial Functions

Define a function \displaystyle f(x) = -3x^{2}+ 7x + 1.

Give the \displaystyle y-coordinate of the \displaystyle y-intercept of its graph.

Possible Answers:

\displaystyle 7

\displaystyle \frac{7}{6}

\displaystyle -3

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

The \displaystyle y-intercept of the graph of a function \displaystyle f(x) is the point at which it crosses the \displaystyle y-axis; its \displaystyle x-coordinate is 0, so its \displaystyle y-coordinate is \displaystyle f(0)

\displaystyle f(x) = -3x^{2}+ 7x + 1,

so, by setting \displaystyle x= 0,

\displaystyle f(0) = -3 \cdot 0^{2}+ 7\cdot 0 + 1 = 0 + 0 + 1 = 1,

making \displaystyle (0, 1) the \displaystyle y-intercept.

Example Question #11 : Graphing Polynomial Functions

Try without a calculator.

The graph with the following equation is a parabola characterized by which of the following?

\displaystyle y= - 4x^2-12x+15

Possible Answers:

Concave upward

Concave downward

Concave to the right

None of these

Concave to the left

Correct answer:

Concave downward

Explanation:

The parabola of an equation of the form \displaystyle y= ax^{2}+ bx + c is vertical, and faces upward or downward depending entirely on the sign of \displaystyle a, the coefficient of \displaystyle x^{2}. This coefficient, \displaystyle -4, is negative; the parabola is concave downward.

Example Question #52 : Polynomial Functions

\displaystyle P(x) is a polynomial function. \displaystyle P(0) = 4, and  \displaystyle P(x) has a zero on the interval \displaystyle (0,1 ).

True or false: By the Intermediate Value Theorem, \displaystyle P(1)< 0

Possible Answers:

True

False

Correct answer:

False

Explanation:

As a polynomial function, the graph of \displaystyle P(x) is continuous. By the Intermediate Value Theorem, if \displaystyle P(a) < M < P(b) or \displaystyle P(b) < M < P(a), then there must exist a value \displaystyle c \in (a,b) such that \displaystyle P(c)= M.

Setting \displaystyle M = 0, \displaystyle a = 0 and \displaystyle b= 1, this becomes:  If \displaystyle P(0) < 0 < P(1) or \displaystyle P(1) < 0 < P(0), then there must exist a value \displaystyle c \in (0,1) such that \displaystyle P(c)= 0 - that is, \displaystyle P(x) must have a zero on \displaystyle (0,1).

However, the question is asking us to use the converse of this statement, which is not true in general. If \displaystyle P(x) has a zero on \displaystyle (0,1), it does not necessarily follow that \displaystyle P(0) < 0 < P(1) or \displaystyle P(1) < 0 < P(0) - specifically, with \displaystyle P(0) = 4 > 0, it does not necessarily follow that \displaystyle P(1) < 0. A counterexample is the function shown below, which fits the conditions of the problem but does not have a negative value for \displaystyle P(1):

Parabola

The answer is false.

 

Learning Tools by Varsity Tutors