Algebra II : Mathematical Relationships and Basic Graphs

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Logarithms With Exponents

Simplify:  

Possible Answers:

Correct answer:

Explanation:

The natural log has a default base of .

This means that the expression written can also be:

Recall the log property that: 

This would eliminate both the natural log and the base, leaving only the exponent.

The natural log and the base  will be eliminated.

The expression will simplify to:

The answer is:  

Example Question #11 : Logarithms With Exponents

Simplify:  

Possible Answers:

Correct answer:

Explanation:

The log property need to solve this problem is:

The base and the log of the base are similar.  They will both cancel and leave just the quantity of log based two.

The answer is:  

Example Question #14 : Logarithms With Exponents

Solve:  

Possible Answers:

Correct answer:

Explanation:

Rewrite the log so that the terms are in a fraction.

Both terms can now be rewritten in base two.

The exponents can be moved to the front as coefficients.

The answer is:  

Example Question #73 : Simplifying Logarithms

Which statement is true of  for all positive values of ?

Possible Answers:

Correct answer:

Explanation:

By the Logarithm of a Power Property, for all real , all 

Setting , the above becomes 

Since, for any  for which the expressions are defined, 

,

setting , th equation becomes

.

Example Question #15 : Logarithms With Exponents

Which statement is true of 

for all integers ?

Possible Answers:

Correct answer:

Explanation:

Due to the following relationship:

; therefore, the expression 

can be rewritten as 

By definition,  

.

Set  and , and the equation above can be rewritten as

,

or, substituting back,

Example Question #381 : Mathematical Relationships And Basic Graphs

Solve for :

Possible Answers:

Correct answer:

Explanation:

To solve for , first convert both sides to the same base:

Now, with the same base, the exponents can be set equal to each other:

Solving for  gives:

Example Question #382 : Mathematical Relationships And Basic Graphs

Solve the equation: 

Possible Answers:

Correct answer:

Explanation:

Example Question #3 : Solving Logarithms

Use    to approximate the value of  .

Possible Answers:

Correct answer:

Explanation:

Rewrite  as a product that includes the number :

Then we can split up the logarithm using the Product Property of Logarithms:

                     

                     

Thus,

.

 

Example Question #383 : Mathematical Relationships And Basic Graphs

Solve for .

Possible Answers:

Correct answer:

Explanation:

Rewrite in exponential form:

Solve for x:

Example Question #384 : Mathematical Relationships And Basic Graphs

Solve the following equation:

Possible Answers:

Correct answer:

Explanation:

For this problem it is helpful to remember that,

  is equivalent to  because 

Therefore we can set what is inside of the parentheses equal to each other and solve for  as follows:

Learning Tools by Varsity Tutors