AP Calculus AB : Derivatives

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #381 : Derivatives

Find the derivative. 

Possible Answers:

Correct answer:

Explanation:

Use the product rule to find the derivative. 

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative.

Possible Answers:

Correct answer:

Explanation:

Use the power rule to find the derivative.

Thus, the derivative is 

Example Question #382 : Derivatives

Find  given 

Possible Answers:

Correct answer:

Explanation:

Here we use the product rule: 

Let  and 

Then  (using the chain rule)

and  (using the chain rule)

Subbing these values back into our equation gives us

Simplify by combining like-terms

and pulling out a  from each term gives our final answer

 

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

If , evaluate .

Possible Answers:

Correct answer:

Explanation:

When evaluating the derivative, pay attention to the fact that  are constants, (not variables) and are treated as such.

 

.

and hence

.

Example Question #2 : Derivative Rules For Sums, Products, And Quotients Of Functions

If , evaluate 

Possible Answers:

Correct answer:

Explanation:

To obtain an expression for , we can take the derivative of  using the sum rule.

.

Substituting  into this equation gives us

.

Example Question #6 : Derivative Rules For Sums, Products, And Quotients Of Functions

If , find .

Possible Answers:

Correct answer:

Explanation:

To find , we will need to use the quotient rule; .

. Start

. Use the quotient rule.

. Take the derivatives inside of the quotient rule. The derivative of  uses the product rule.

. Simplify to match the correct answer.

Example Question #2 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the following equation:

Possible Answers:

None of the other answers

Correct answer:

Explanation:

Because this problem contains two functions multiplied together that can't be simplified any further, it calls for the product rule, which states that .

By using this rule, we get the answer:

By simplifying, we conclude that the derivative is equal to 

.

Example Question #8 : Derivative Rules For Sums, Products, And Quotients Of Functions

Possible Answers:

Correct answer:

Explanation:

Example Question #9 : Derivative Rules For Sums, Products, And Quotients Of Functions

Possible Answers:

Correct answer:

Explanation:

Example Question #381 : Derivatives

Possible Answers:

Correct answer:

Explanation:

Learning Tools by Varsity Tutors