AP Calculus BC : Derivatives

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #8 : Chain Rule And Implicit Differentiation

\(\displaystyle \frac{d}{dx } 2 \sin (x^2 )\)

Possible Answers:

\(\displaystyle 2x \cdot \cos(x^2)\)

\(\displaystyle 2\cdot \cos(x^2)\)

\(\displaystyle 4x \cdot \cos(x^2)\)

\(\displaystyle -4x \cdot \cos(x^2)\)

Correct answer:

\(\displaystyle 4x \cdot \cos(x^2)\)

Explanation:

Consider this function a composition of two functions, f(g(x)). In this case, \(\displaystyle f(x) =2 \sin (x)\) and \(\displaystyle g(x) = x^2\). According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x))\cdot g'(x)\). Here, \(\displaystyle f'(g(x)) = 2 \cos (x^2 )\) and \(\displaystyle g'(x) = 2x\), so the derivative is \(\displaystyle 2 \cos (x^2 ) \cdot 2x = 4x \cdot \cos(x^2)\)

Example Question #151 : Derivatives

\(\displaystyle \frac{d}{dx } \cos(\ln(x))\)

Possible Answers:

\(\displaystyle \frac{ \sin (\ln x)}{x}\)

\(\displaystyle \frac{- \sin (\ln x)}{x}\)

\(\displaystyle \frac{- \sin x}{ \cos x}\)

\(\displaystyle \frac{- \sin x}{x}\)

Correct answer:

\(\displaystyle \frac{- \sin (\ln x)}{x}\)

Explanation:

According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x))\cdot g'(x)\). In this case, \(\displaystyle f(x) = \cos(x)\) and \(\displaystyle g(x) = \ln(x)\). The derivative is \(\displaystyle - \sin (\ln x ) \cdot \frac{1}{x } = \frac{- \sin (\ln x )}{x }\).

Example Question #152 : Derivatives

\(\displaystyle \frac{d}{dx } \tan ^ 3 x\)

Possible Answers:

\(\displaystyle 1 + \tan ^2 x\)

\(\displaystyle 3 \tan ^2 x + 3 \tan ^4 x\)

\(\displaystyle 2\tan^2 x\)

\(\displaystyle 3 \tan ^2 x\)

Correct answer:

\(\displaystyle 3 \tan ^2 x + 3 \tan ^4 x\)

Explanation:

According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x))\cdot g'(x)\). In this case, \(\displaystyle f(x) = x^3\) and \(\displaystyle g(x) = \tan x\). The derivative is \(\displaystyle 3 (\tan x) ^2 \cdot( 1 + \tan ^2 x ) = 3 \tan ^2 x (1 + \tan ^2 x ) = 3 \tan ^2 x + 3 \tan ^4 x\)

Example Question #153 : Derivatives

\(\displaystyle \frac{d}{dx } 4(x-2)^2\)

Possible Answers:

\(\displaystyle 8x - 16\)

\(\displaystyle -16(x-2)\)

\(\displaystyle 4\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 8x - 16\)

Explanation:

According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x)) \cdot g'(x)\). In this case, \(\displaystyle f(x ) = 4x^2\) and \(\displaystyle g(x) = x-2\)\(\displaystyle f'(x) = 8x\) and \(\displaystyle g'(x) = 1\)

The derivative is \(\displaystyle 8(x-2) \cdot 1 = 8x -16\)

Example Question #154 : Derivatives

\(\displaystyle \frac{d}{dx} e^{\sin x}\)

Possible Answers:

\(\displaystyle e ^ {\sin x }\)

\(\displaystyle \cos x \cdot e^ {\sin x}\)

\(\displaystyle - \cos x \cdot e ^ {\sin x }\)

\(\displaystyle e ^{ \cos x }\)

Correct answer:

\(\displaystyle \cos x \cdot e^ {\sin x}\)

Explanation:

According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x)) \cdot g'(x)\). In this case, \(\displaystyle f(x) = e^x\) and \(\displaystyle g(x) = \sin x\). Since \(\displaystyle f'(x) = e^x\) and \(\displaystyle g'(x) = \cos x\), the derivative is \(\displaystyle e ^ {\sin x } \cdot \cos x\)

Example Question #155 : Derivatives

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} 3 ^ {x^2 }\)

Possible Answers:

\(\displaystyle 3^{x^2} \cdot 2x \cdot \ln(3)\)

\(\displaystyle 3^ {2x} \cdot \ln(3)\)

\(\displaystyle 3^{x^2} (\frac{x^2}{3} + 2x \ln 3)\)

\(\displaystyle 2x \ln 3\)

Correct answer:

\(\displaystyle 3^{x^2} \cdot 2x \cdot \ln(3)\)

Explanation:

According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x)) \cdot g'(x)\). In this case, \(\displaystyle f(x) = 3^x\) and \(\displaystyle g(x) = x^2\). Since \(\displaystyle f'(x) = 3^ {x} \cdot \ln(3)\) and \(\displaystyle g'(x) = 2x\), the derivative is \(\displaystyle 3^{x^2 } \cdot \ln(3 ) \cdot 2x\)

Example Question #156 : Derivatives

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \enspace \frac{1}{4} \cdot 2^{4x-1}\)

Possible Answers:

\(\displaystyle \frac{\ln(2)}{4}\)

\(\displaystyle \frac{2^{4x-1}}{4}\)

\(\displaystyle \frac{2^{4x-1}\cdot \ln (2)}{2}\)

\(\displaystyle 2^ {4x-1} \cdot \ln(2)\)

Correct answer:

\(\displaystyle 2^ {4x-1} \cdot \ln(2)\)

Explanation:

According to the chain rule, \(\displaystyle f(g(x)) ' = f'(g(x)) \cdot g'(x)\). In this case, \(\displaystyle f(x) = \frac{1}{4} \cdot 2^x\) and \(\displaystyle g(x) = 4x-1\). Here \(\displaystyle f'(x) = \frac{1}{4} \cdot 2^x \cdot \ln(2)\) and \(\displaystyle g'(x) = 4\). The derivative is: 

\(\displaystyle \frac{1}{4} \cdot 2 ^{4x-1} \cdot \ln(2) \cdot 4 = 2^{4x-1} \cdot \ln(2)\)

Example Question #151 : Derivatives

Given the relation \(\displaystyle y^2=x^2+y\), find \(\displaystyle \frac{dy}{dx}\).

Possible Answers:

\(\displaystyle \frac{x}{y-1}\)

\(\displaystyle \frac{y}{x}\)

\(\displaystyle \frac{2x}{2y-1}\)

\(\displaystyle \frac{2x}{y}\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle \frac{2x}{2y-1}\)

Explanation:

We begin by taking the derivative of both sides of the equation.

\(\displaystyle \frac{d}{dx}(y^2)=\frac{d}{dx}(x^2+y)\).

\(\displaystyle 2yy' = 2x +y'\). (The left hand side uses the Chain Rule.)

\(\displaystyle 2yy' -y' = 2x\).

\(\displaystyle (2y-1)y'=2x\)

\(\displaystyle y' = \frac{2x}{2y-1}\)

\(\displaystyle \frac{dy}{dx} = \frac{2x}{2y-1}\).

Example Question #157 : Derivatives

Given the relation \(\displaystyle x^2+xy^2=y\), find \(\displaystyle y'\).

Possible Answers:

\(\displaystyle \frac{2x+y^2}{-2x+1}\)

\(\displaystyle \frac{x+y}{y^2}\)

\(\displaystyle \frac{2x}{2x+y}\)

None of the other answers

\(\displaystyle \frac{2x+1}{2x+y^2}\)

Correct answer:

\(\displaystyle \frac{2x+y^2}{-2x+1}\)

Explanation:

We can use implicit differentiation to find \(\displaystyle y'\). We being by taking the derivative of both sides of the equation.

\(\displaystyle \frac{d}{dx}(x^2+xy^2)=\frac{d}{dx}(y)\)

\(\displaystyle \frac{d}{dx}(x^2)+\frac{d}{dx}(xy^2)=y'\)

\(\displaystyle 2x +[x \times 2y' + y^2 \times 1] = y'\) (This line uses the product rule for the derivative of \(\displaystyle xy^2\).)

\(\displaystyle 2x +2xy' +y^2 = y'\)

\(\displaystyle 2x+y^2 = -2xy' + y'\)

\(\displaystyle 2x+y^2 = (-2x+1)y'\)

\(\displaystyle \frac{2x+y^2}{-2x+1} = y'\)

Example Question #158 : Derivatives

If \(\displaystyle f(x) = e^{e^x}\), find \(\displaystyle f'(1)\).

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle e^e\)

\(\displaystyle e\)

\(\displaystyle e^{e+1}\)

\(\displaystyle e^2\)

Correct answer:

\(\displaystyle e^{e+1}\)

Explanation:

Since we have a function inside of a another function, the chain rule is appropriate here.

The chain rule formula is

\(\displaystyle (h(g(x)))' = h'(g(x))\times g'(x)\).

In our function, both \(\displaystyle h(x), g(x)\) are \(\displaystyle e^x\)

So we have

\(\displaystyle f'(x) = (h(g(x)))' = e^{e^x} \times e^x = e^{e^x+1}\)

and

\(\displaystyle f'(1)=e^{e+1}\).

 

Learning Tools by Varsity Tutors