All AP Calculus BC Resources
Example Questions
Example Question #1 : Parametric, Polar, And Vector
Rewrite as a Cartesian equation:
So
or
We are restricting to values on
, so
is nonnegative; we choose
.
Also,
So
or
We are restricting to values on
, so
is nonpositive; we choose
or equivalently,
to make nonpositive.
Then,
and
Example Question #3 : Parametric, Polar, And Vector
Rewrite as a Cartesian equation:
, so
This makes the Cartesian equation
.
Example Question #2 : Parametric Form
If and
, what is
in terms of
(rectangular form)?
Given and
, we can find
in terms of
by isolating
in both equations:
Since both of these transformations equal , we can set them equal to each other:
Example Question #1 : Parametric Form
Given and
, what is the arc length between
?
In order to find the arc length, we must use the arc length formula for parametric curves:
.
Given and
, we can use using the Power Rule
for all
, to derive
and
.
Plugging these values and our boundary values for into the arc length equation, we get:
Now, using the Power Rule for Integrals
for all
,
we can determine that:
Example Question #4 : Parametric, Polar, And Vector Functions
Given and
, what is the length of the arc from
?
In order to find the arc length, we must use the arc length formula for parametric curves:
.
Given and
, we can use using the Power Rule
for all
, to derive
and
.
Plugging these values and our boundary values for into the arc length equation, we get:
Now, using the Power Rule for Integrals
for all
,
we can determine that:
Example Question #2 : Functions, Graphs, And Limits
Find the length of the following parametric curve
,
,
.
The length of a curve is found using the equation
We use the product rule,
, when
and
are functions of
,
the trigonometric rule,
and
and exponential rule,
to find
and
.
In this case
,
The length of this curve is
Using the identity
Using the identity
Using the trigonometric identity where
is a constant and
Using the exponential rule,
Using the exponential rule, , gives us the final solution
Example Question #81 : Parametric, Polar, And Vector
Find dy/dx at the point corresponding to the given value of the parameter without eliminating the parameter:
The formula for dy/dx for parametric equations is given as:
From the problem statement:
If we plug these into the above equation we end up with:
If we plug in our given value for t, we end up with:
This is one of the answer choices.
Example Question #1 : Parametric Form
Draw the graph of from
.
Between and
, the radius approaches
from
.
From to
the radius goes from
to
.
Between and
, the curve is redrawn in the opposite quadrant, the first quadrant as the radius approaches
.
From and
, the curve is redrawn in the second quadrant as the radius approaches
from
.
Example Question #2 : Parametric Form
Draw the graph of where
.
Because this function has a period of , the amplitude of the graph
appear at a reference angle of
(angles halfway between the angles of the axes).
Between and
the radius approaches 1 from 0.
Between and
, the radius approaches 0 from 1.
From to
the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.
Between and
, the radius approaches 0 from -1, and is also drawn in the fourth quadrant.
From and
, the radius approaches 1 from 0. Between
and
, the radius approaches 0 from 1.
Then between and
the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between
and
, the curve is drawn in the second quadrant.
Example Question #1 : Graphing Polar Form
Graph where
.
Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.
This leaves us with the areas from to
,
to
, and
to
.
Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .
To draw the graph, the radius is 1 at and traces to 0 at
. As well, the negative part of the radius starts at -1 and traces to zero in the opposite quadrant, the third quadrant.
From to
, the curves are traced from 0 to 1 and 0 to -1 in the fourth quadrant. Following this pattern, the graph is redrawn again from the areas included in
to
.
Certified Tutor
All AP Calculus BC Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)