AP Calculus BC : Integrals

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Numerical Approximations To Definite Integrals

Find the Left Riemann sum of the function

\(\displaystyle f(x)=x+7\)

on the interval \(\displaystyle [0,8]\) divided into four sub-intervals.

Possible Answers:

\(\displaystyle 60\)

\(\displaystyle 80\)

\(\displaystyle 100\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 80\)

Explanation:

The interval \(\displaystyle [0, 8]\) divided into four sub-intervals gives rectangles with vertices of the bases at

\(\displaystyle x=0,2,4,6,8\)

For the Left Riemann sum, we need to find the rectangle heights which values come from the left-most function value of each sub-interval, or f(0), f(2), f(4), and f(6).

\(\displaystyle f(0) = 0+7 = 7\)

\(\displaystyle f(2) = 2+7 = 9\)

\(\displaystyle f(4) = 4+7 = 11\)

\(\displaystyle f(6) = 6+7 = 13\)

Because each sub-interval has a width of 2, the Left Riemann sum is

\(\displaystyle A = bh = 2(7+9+11+13) = 80\)

Example Question #1 : Integrals

Given a function \(\displaystyle y=x^{2}\), find the Left Riemann Sum of the function on the interval \(\displaystyle [0,6]\) divided into three sub-intervals. 

Possible Answers:

\(\displaystyle 38\)

\(\displaystyle 44\)

\(\displaystyle 36\)

\(\displaystyle 42\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 40\)

Explanation:

In order to find the Riemann Sum of a given function, we need to approximate the area under the line or curve resulting from the function using rectangles spaced along equal sub-intervals of a given interval. Since we have an interval \(\displaystyle [0,6]\) divided into \(\displaystyle 3\) sub-intervals, we'll be using rectangles with vertices at \(\displaystyle x=0,2,4,6\)

To approximate the area under the curve, we need to find the areas of each rectangle in the sub-intervals. We already know the width or base of each rectangle is \(\displaystyle b=2\) because the rectangles are spaced \(\displaystyle 2\) units apart. Since we're looking for the Left Riemann Sum, we want to find the heights \(\displaystyle h\) of each rectangle by taking the values of each leftmost function value on each sub-interval, as follows:

\(\displaystyle f(0)=(0)^{2}=0\)

\(\displaystyle f(2)=(2)^{2}=4\)

\(\displaystyle f(4)=(4)^{2}=16\)

Putting it all together, the Left Riemann Sum is 

\(\displaystyle A=bh=2(0+4+16)=2(20)=40\).

Example Question #1 : Riemann Sums

Given a function \(\displaystyle y=\frac{1}{4}x+2\), find the Left Riemann Sum of the function on the interval \(\displaystyle [0,4]\) divided into four sub-intervals. 

Possible Answers:

\(\displaystyle \frac{17}{2}\)

\(\displaystyle \frac{21}{2}\)

\(\displaystyle \frac{19}{2}\)

\(\displaystyle \frac{25}{2}\)

\(\displaystyle \frac{23}{2}\)

Correct answer:

\(\displaystyle \frac{19}{2}\)

Explanation:

In order to find the Riemann Sum of a given function, we need to approximate the area under the line or curve resulting from the function using rectangles spaced along equal sub-intervals of a given interval. Since we have an interval \(\displaystyle [0,4]\) divided into \(\displaystyle 4\) sub-intervals, we'll be using rectangles with vertices at \(\displaystyle x=0,1,2,3,4\)

To approximate the area under the curve, we need to find the areas of each rectangle in the sub-intervals. We already know the width or base of each rectangle is \(\displaystyle b=1\) because the rectangles are spaced \(\displaystyle 1\) unit apart. Since we're looking for the Left Riemann Sum, we want to find the heights \(\displaystyle h\) of each rectangle by taking the values of each leftmost function value on each sub-interval, as follows:

\(\displaystyle f(0)=\frac{1}{4}(0)+2=0+2=2\)

\(\displaystyle f(1)=\frac{1}{4}(1)+2=\frac{1}{4}+\frac{8}{4}=\frac{9}{4}\)

\(\displaystyle f(2)=\frac{1}{4}(2)+2=\frac{1}{2}+\frac{4}{2}=\frac{5}{2}\)

\(\displaystyle f(3)=\frac{1}{4}(3)+2=\frac{3}{4}+\frac{8}{4}=\frac{11}{4}\)

Putting it all together, the Left Riemann Sum is 

\(\displaystyle A=bh=1(2+\frac{9}{4}+\frac{5}{2}+\frac{11}{4})=\frac{8}{4}+\frac{9}{4}+\frac{10}{4}+\frac{11}{4}=\frac{38}{4}=\frac{19}{2}\)

Example Question #3 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{3}^{3.9}(-9tan(10sin(5x)))dx\\&\text{Using }3\text{ intervals.}\end{align*}\)

Possible Answers:

\(\displaystyle 3.81\)

\(\displaystyle 94.16\)

\(\displaystyle 9.91\)

\(\displaystyle 59.47\)

Correct answer:

\(\displaystyle 9.91\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{3}^{3.9}(-9tan(10sin(5x)))dx\\&\text{So the interval is }[3,3.9]\text{ the subintervals have length }\frac{3.9-(3)}{3}=\frac{3}{10}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[3,\frac{33}{10},\frac{18}{5}]\\&\int_{3}^{3.9}(-9tan(10sin(5x)))dx=\frac{3}{10}[(-9tan(10sin(15)))+(-9tan(10sin(\frac{33}{2})))+(-9tan(10sin(18)))]\\&\int_{3}^{3.9}(-9tan(10sin(5x)))dx=9.91\end{align*}\)

Example Question #4 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Calculate the Riemann sums integral approximation of :}\\&\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx\\&\text{Using left points over }4\text{ intervals.}\end{align*}\)

Possible Answers:

\(\displaystyle 815.11\)

\(\displaystyle 343.87\)

\(\displaystyle 17826.44\)

\(\displaystyle 2200.80\)

Correct answer:

\(\displaystyle 2200.80\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx\\&\text{So the interval is }[-2,11.6]\text{ the subintervals have length }\frac{11.6-(-2)}{4}=\frac{17}{5}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[-2,\frac{7}{5},\frac{24}{5},\frac{41}{5}]\\&\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx=\frac{17}{5}[(18\cdot 3^{(4tan(8))})+(\frac{18}{3^{(4tan(\frac{28}{5}))}})+(\frac{18}{3^{(4tan(\frac{96}{5}))}})+(\frac{18}{3^{(4tan(\frac{164}{5}))}})]\\&\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx=2200.80\end{align*}\)

Example Question #5 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx\\&\text{Using }3\text{ intervals.}\end{align*}\)

Possible Answers:

\(\displaystyle 41.86\)

\(\displaystyle 4.19\)

\(\displaystyle 14.43\)

\(\displaystyle 6.25\)

Correct answer:

\(\displaystyle 41.86\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx\\&\text{So the interval is }[-4,4.4]\text{ the subintervals have length }\frac{4.4-(-4)}{3}=\frac{14}{5}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[-4,-\frac{6}{5},\frac{8}{5}]\\&\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx=\frac{14}{5}[(6cos(11e^{(-8)}))+(6cos(11e^{(-\frac{12}{5})}))+(6cos(11e^{(\frac{16}{5})}))]\\&\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx=41.86\end{align*}\)

Example Question #6 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{0}^{12}(11sin(20sin(x)))dx\\&\text{Using }3\text{ intervals.}\end{align*}\)

Possible Answers:

\(\displaystyle 1.20\)

\(\displaystyle 11.66\)

\(\displaystyle 68.77\)

\(\displaystyle 4.86\)

Correct answer:

\(\displaystyle 11.66\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{0}^{12}(11sin(20sin(x)))dx\\&\text{So the interval is }[0,12]\text{ the subintervals have length }\frac{12-(0)}{3}=4\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[0,4,8]\\&\int_{0}^{12}(11sin(20sin(x)))dx=4[(0)+(11sin(20sin(4)))+(11sin(20sin(8)))]\\&\int_{0}^{12}(11sin(20sin(x)))dx=11.66\end{align*}\)

Example Question #7 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{0}^{3}(-16sin(2x^{2}))dx\\&\text{Using }3\text{ intervals.}\end{align*}\)

Possible Answers:

\(\displaystyle -10.85\)

\(\displaystyle -249.10\)

\(\displaystyle -151.89\)

\(\displaystyle -30.38\)

Correct answer:

\(\displaystyle -30.38\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{0}^{3}(-16sin(2x^{2}))dx\\&\text{So the interval is }[0,3]\text{ the subintervals have length }\frac{3-(0)}{3}=1\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[0,1,2]\\&\int_{0}^{3}(-16sin(2x^{2}))dx=1[(0)+(-16sin(2))+(-16sin(8))]\\&\int_{0}^{3}(-16sin(2x^{2}))dx=-30.38\end{align*}\)

Example Question #8 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Using }3\text{ intervals, and the method of left point Riemann sums approximate the integral:}\\&\int_{4}^{12.7}(-17cos(20x^{2}))dx\end{align*}\)

Possible Answers:

\(\displaystyle 1.91\)

\(\displaystyle 16.39\)

\(\displaystyle 4.20\)

\(\displaystyle 91.80\)

Correct answer:

\(\displaystyle 16.39\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{4}^{12.7}(-17cos(20x^{2}))dx\\&\text{So the interval is }[4,12.7]\text{ the subintervals have length }\frac{12.7-(4)}{3}=\frac{29}{10}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[4,\frac{69}{10},\frac{49}{5}]\\&\int_{4}^{12.7}(-17cos(20x^{2}))dx=\frac{29}{10}[(-17cos(320))+(-17cos(\frac{4761}{5}))+(-17cos(\frac{9604}{5}))]\\&\int_{4}^{12.7}(-17cos(20x^{2}))dx=16.39\end{align*}\)

Example Question #9 : Numerical Approximations To Definite Integrals

\(\displaystyle \begin{align*}&\text{Using }3\text{ intervals, and the method of left point Riemann sums approximate the integral:}\\&\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx\end{align*}\)

Possible Answers:

\(\displaystyle -0.31\)

\(\displaystyle -0.44\)

\(\displaystyle -10.80\)

\(\displaystyle -3.00\)

Correct answer:

\(\displaystyle -3.00\)

Explanation:

\(\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx\\&\text{So the interval is }[0,9]\text{ the subintervals have length }\frac{9-(0)}{3}=3\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[0,3,6]\\&\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx=3[(-1)+(-\frac{4}{4^e^{(18)}})+(-\frac{4}{4^e^{(36)}})]\\&\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx=-3.00\end{align*}\)

Learning Tools by Varsity Tutors