AP Physics 1 : Universal Gravitation

Study concepts, example questions & explanations for AP Physics 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #652 : Newtonian Mechanics

An electronic scale is used to find the mass of a lead cube at sea level. The scale and lead cube are then transported to the top of a mountain, over \displaystyle 20000\textup{ ft} above sea level. How does the weight reading compare to the weight given at sea level?

Possible Answers:

It will be the same

None of these

It is impossible to determine

It will be smaller

It will be larger

Correct answer:

It will be smaller

Explanation:

The electronic scale measures based on the normal force the scale provides to the object. This in turn is based on the force of gravity on the object by the earth.

\displaystyle F_G=-G\frac{m_1 m_2}{r^2}

As height above sea level increases, as does \displaystyle r, the distance to the center of the Earth. As \displaystyle r increases, \displaystyle F_G decreases. This would decrease the normal force which would decrease the reading on the scale.

Example Question #83 : Specific Forces

\displaystyle G=6.67*10^{-11}\frac{N*m^2}{kg^2}

Mass of moon:\displaystyle 7.3*10^{22}kg

Radius of moon: \displaystyle 1737km

A spring of rest length \displaystyle 15cm is placed upright on the moon. A mass of \displaystyle 15kg is gently placed on top and the spring contracts by \displaystyle 1cm. Determine the spring constant.

Possible Answers:

None of these

\displaystyle \frac{2415N}{m}

\displaystyle \frac{3388N}{m}

\displaystyle \frac{4449N}{m}

\displaystyle \frac{3751N}{m}

Correct answer:

\displaystyle \frac{2415N}{m}

Explanation:

First, estimate the acceleration due to gravity close to the moon's surface:

\displaystyle F=ma

\displaystyle F=-G\frac{m_1m_2}{r^2}

Combining equations and solving for the acceleration:

\displaystyle a_{mass}=-G\frac{m_{moon}}{r_{moon}^2}

Converting \displaystyle km to \displaystyle m and pugging in values:

\displaystyle a_{mass}=-6.67*10^{-11}\frac{7.3*10^{22}}{(1737*10^3)^2}

\displaystyle a_{mass}=-1.61\frac{m}{s^2}

Using

\displaystyle F_{total}=F_1+F_2+...

\displaystyle F_{gravity}=ma_{gravity}

\displaystyle F_{total}=kx+ma_{gravity}

Solving for \displaystyle k

\displaystyle k=\frac{F_{total}-ma_{gravity}}{x}

Converting \displaystyle cm to \displaystyle m and plugging in values:

\displaystyle k=\frac{0-15*-1.61}{.01}

(Since the mass is at rest, the acceleration and thus the net force is zero)

\displaystyle k=\frac{2415N}{m}

Example Question #53 : Universal Gravitation

A rope is used to accelerate a \displaystyle 5kg mass upwards at \displaystyle 2\frac{m}{s^2}. Determine the tension in the rope.

Possible Answers:

\displaystyle 202N

\displaystyle 90N

None of these

\displaystyle 59N

\displaystyle 18N

Correct answer:

\displaystyle 59N

Explanation:

Using

\displaystyle F=ma

\displaystyle F_{total}=F_1+F_2+...

Combining equations:

\displaystyle ma=F_{tension}+mg

Solving for \displaystyle F_{tension} and plugging in values:

\displaystyle F_{tension}=5*2-5*(-9.8)

\displaystyle F_{tension}=59N

Example Question #653 : Newtonian Mechanics

Mass of Earth: \displaystyle 5.972*10^{24} kg

Universal gravitation constant: \displaystyle 6.67*10^{-11}\frac{N\cdot m^2}{kg^2}

Radius of earth: \displaystyle 6371km

Determine the magnitude of gravitational force by the earth on a \displaystyle 110kg  astronaut \displaystyle 200km above the surface of the earth.

Possible Answers:

\displaystyle 1110N

\displaystyle 987N

\displaystyle 1015N

\displaystyle 1455N

\displaystyle 1561N

Correct answer:

\displaystyle 1015N

Explanation:

Finding total distance from center of Earth to astronaut:

\displaystyle 200km+6371km=6571km

Converting to meters

\displaystyle 6.571*10^6m

Using Universal Gravitation equation:

\displaystyle F_G=-G\frac{m_1m_2}{r^2}

Plugging in values:

\displaystyle F_G=-6.67*10^{-11}\frac{5.972*10^{24}*110}{(6.571*10^6)^2}

\displaystyle |F_G|=1015N

Example Question #53 : Universal Gravitation

Mass of Jupiter: \displaystyle 1.89*10^{27}kg

Universal gravitation constant: \displaystyle 6.67*10^{-11}\frac{N*m^2}{kg^2}

Radius of Jupiter: \displaystyle 69911km

A marble is placed \displaystyle 100000km from the surface of Jupiter. Determine the acceleration due to the gravity of Jupiter.

Possible Answers:

\displaystyle 6.11*10^{-2}\frac{m}{s^2}

\displaystyle 3.55*10^{-2}\frac{m}{s^2}

None of these

\displaystyle 4.52*10^{2}\frac{m}{s^2}

\displaystyle 4.52*10^{-2}\frac{m}{s^2}

Correct answer:

\displaystyle 4.52*10^{-2}\frac{m}{s^2}

Explanation:

Using

\displaystyle F=ma

and

\displaystyle |F_G|=G\frac{m_1 m_2}{r^2}

Combining equations

\displaystyle m_1a=G\frac{m_1m_2}{r^2}

Solving for \displaystyle a

\displaystyle a=G\frac{m_2}{r^2}

Plugging in values:

\displaystyle a=6.67*10^{-11}\frac{1.89*10^{27}}{(1670*10^6)^2}

\displaystyle a=4.52*10^{-2}\frac{m}{s^2}

Example Question #52 : Universal Gravitation

\displaystyle G=6.67*10^{-11}\frac{N*m^2}{kg^2}

Mass of Pluto:\displaystyle 1.31*10^{22}kg

Radius of Pluto: \displaystyle 1.19*10^{6}m

A spring of rest length \displaystyle 27cm is placed upright on Pluto. A mass of \displaystyle 27kg is gently placed on top and the spring contracts by \displaystyle 4cm. Determine the spring constant.

Possible Answers:

\displaystyle \frac{557N}{m}

\displaystyle \frac{844N}{m}

None of these

\displaystyle \frac{416N}{m}

\displaystyle \frac{611N}{m}

Correct answer:

\displaystyle \frac{416N}{m}

Explanation:

First, estimate the acceleration due to gravity close to Pluto's surface:

\displaystyle F=ma

\displaystyle F=-G\frac{m_1m_2}{r^2}

Combining equations and solving for the acceleration:

\displaystyle a_{mass}=-G\frac{m_{pluto}}{r_{pluto}^2}

Plugging in values:

\displaystyle a_{mass}=-6.67*10^{-11}\frac{1.31*10^{22}}{(1.19*10^6)^2}

\displaystyle a_{mass}=-.617\frac{m}{s^2}

Using

\displaystyle F_{total}=F_1+F_2+...

\displaystyle F_{gravity}=ma_{gravity}

\displaystyle F_{total}=kx+ma_{gravity}

Solving for \displaystyle k

\displaystyle k=\frac{F_{total}-ma_{gravity}}{x}

Converting \displaystyle cm to \displaystyle m and plugging in values:

\displaystyle k=\frac{0-27*(-.617)}{.04}

(Since the mass is at rest, the acceleration and thus the net force is zero)

\displaystyle k=\frac{416N}{m}

Example Question #54 : Universal Gravitation

\displaystyle G=6.67*10^{-11}\frac{N\cdot m^2}{kg^2}

Mass of Mars:\displaystyle 639*10^{21}kg

Radius of Mars: \displaystyle 3.39*10^{6}m

A spring of rest length \displaystyle 18cm is placed upright on Mars. A mass of \displaystyle 65kg is gently placed on top and the spring contracts by \displaystyle 5.5cm. Determine the spring constant.

Possible Answers:

\displaystyle k=\frac{4385N}{m}

\displaystyle k=\frac{3985N}{m}

None of these

\displaystyle k=\frac{3751N}{m}

\displaystyle k=\frac{4014N}{m}

Correct answer:

\displaystyle k=\frac{4385N}{m}

Explanation:

First, estimate the acceleration due to gravity close to the martian surface:

\displaystyle F=ma

\displaystyle F=-G\frac{m_1m_2}{r^2}

Combining equations and solving for the acceleration:

\displaystyle a_{mass}=-G\frac{m_{mars}}{r_{mars}^2}

Plugging in values:

\displaystyle a_{mass}=-6.67*10^{-11}\frac{639*10^{21}}{(3.39*10^6)^2}

\displaystyle a_{mass}=-3.71\frac{m}{s^2}

Using

\displaystyle F_{total}=F_1+F_2+...

\displaystyle F_{gravity}=ma_{gravity}

\displaystyle F_{total}=kx+ma_{gravity}

Solving for \displaystyle k

\displaystyle k=\frac{F_{total}-ma_{gravity}}{x}

Converting \displaystyle cm to \displaystyle m and plugging in values:

\displaystyle k=\frac{0-65*(-3.71)}{.055}

(Since the mass is at rest, the acceleration and thus the net force is zero)

\displaystyle k=\frac{4385N}{m}

Example Question #52 : Universal Gravitation

Determine the surface gravitational constant for a roughly spherical asteroid of mass \displaystyle 6.3*10^{20}kg and a radius of \displaystyle 250km

Possible Answers:

\displaystyle .638\frac{m}{s}

\displaystyle .611\frac{m}{s}

None of these

\displaystyle .672\frac{m}{s}

\displaystyle .782\frac{m}{s}

Correct answer:

\displaystyle .672\frac{m}{s}

Explanation:

Setting universal gravitation equal to the surface gravitational approximation

\displaystyle -G\frac{m_1m_2}{r^2}=-m_2*g_a

Where \displaystyle g_a will be the surface gravitational acceleration constant

Solving for \displaystyle g_a

\displaystyle g_a=G\frac{m_1}{r^2}

Plugging in values

\displaystyle g_a=6.67*10^{-11}\frac{6.3*10^{20}}{250,000^2}

\displaystyle g_a=.672\frac{m}{s}

Example Question #91 : Specific Forces

Determine the surface gravitational constant for a roughly spherical asteroid of mass \displaystyle 1.1*10^{20}kg and a radius of \displaystyle 200km.

Possible Answers:

\displaystyle 3.33\frac{m}{s^2}

\displaystyle 5.41\frac{m}{s^2}

None of these

\displaystyle 9.8\frac{m}{s^2}

\displaystyle .183\frac{m}{s^2}

Correct answer:

\displaystyle .183\frac{m}{s^2}

Explanation:

Setting universal gravitation equal to the gravitational approximation

\displaystyle -G\frac{m_1m_2}{r^2}=-m_2*g_a

Where \displaystyle g_a will be the surface gravitational acceleration constant

Solving for \displaystyle g_a

\displaystyle g_a=G\frac{m_1}{r^2}

Converting \displaystyle km to \displaystyle m and plugging in values

\displaystyle g_a=6.67*10^{-11}\frac{1.1*10^{20}}{200,000^2}

\displaystyle g_a=.183\frac{m}{s^s}

Example Question #57 : Universal Gravitation

Astronauts have recently detected a new exoplanet, Zina. The mass of the planet is twice that of Earth, and the radius is three times larger than Earth's radius. What fraction of our gravity is experienced on this planet?

Possible Answers:

Same gravity because gravity is constant.

\displaystyle \frac{2}{3}

\displaystyle \frac{2}{9}

\displaystyle \frac{9}{2}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle \frac{2}{9}

Explanation:

The gravity equation is:

\displaystyle g=\frac{GM}{R^2}, where \displaystyle G is the universal gravitation constant, \displaystyle M is the mass of the planet, and \displaystyle R  is the radius of planet. To find a ratio between the gravity on the planet Zina and our planet, we need to plug in the relevant information:

\displaystyle \frac{g_{Zina}}{g_{Earth}}=\frac{\frac{GM_{Zina}}{R^2_{Zina}}}{\frac{GM_{Earth}}{R^2_{Earth}}}=\frac{\frac{G*2*M_{Earth}}{3^2*R^2_{Earth}}}{\frac{GM_{Earth}}{R^2_{Earth}}}

\displaystyle =\frac{\frac{G*2}{3^2}}{\frac{G*1}{1}}=\frac{2}{9}.

Remember, we are doing a ratio, so if we reference everything in terms of Earth numbers, the bottom fraction becomes much simpler and cancels out with the top fraction. Also, the gravitational constant is constant, so it cancels out. Therefore, the only important information are the ratios the mass and radius differ from Earth's. 

Learning Tools by Varsity Tutors