Calculus 1 : Other Differential Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Other Differential Functions

Solve for \(\displaystyle f{}'(x)\) when 

\(\displaystyle f(x)= \left(9x^4+4x^3+\frac{x}{2}\right)^9\)

Possible Answers:

\(\displaystyle f{}'(x)=(9x^4+4x^3+\frac{x}{2})^9(36x^3+12x^2+\frac{1}{2})\)

\(\displaystyle f{}'(x)=9(9x^4+4x^3+\frac{x}{2})^8\)

\(\displaystyle f{}'(x)=36x^3+12x^2+\frac{1}{2}\)

\(\displaystyle f{}'(x)=(9x^4+4x^3+\frac{x}{2})^8(324x^3+108x^2+\frac{9}{2})\)

Correct answer:

\(\displaystyle f{}'(x)=(9x^4+4x^3+\frac{x}{2})^8(324x^3+108x^2+\frac{9}{2})\)

Explanation:

\(\displaystyle f(x)= \left(9x^4+4x^3+\frac{x}{2}\right)^9\)

using the chain rule:

 \(\displaystyle \frac{d}{dx}(f(g(x)))=f{}'(g(x))g{}'(x)\)

\(\displaystyle f{}'(x)=9(9x^4+4x^3+x/2)^8(36x^3+12x^2+1/2)\)

multiply the constant 9 into the second function to simplify answer

Example Question #32 : Other Differential Functions

Solve for \(\displaystyle f{}'(x)\) when \(\displaystyle f(x)=\log_{9}x^2\)

Possible Answers:

\(\displaystyle f{}'(x)= \frac{2}{x}\)

\(\displaystyle f{}'(x)=\frac{x}{\ln 9}\)

\(\displaystyle f{}'(x)=\frac{2}{\ln 9}\)

\(\displaystyle f{}'(x)=\frac{2}{x\ln 9}\)

Correct answer:

\(\displaystyle f{}'(x)=\frac{2}{x\ln 9}\)

Explanation:

\(\displaystyle f(x)=\log_{9}x^2\)

using the logarithm identities change the equation to base 10: 

\(\displaystyle f(x)=\frac{\ln x^2}{\ln 9}\)

using lograthim identities simplify the numerator:

\(\displaystyle f(x)=\frac{2\ln x}{\ln 9}\)

differentiate

\(\displaystyle f{}'(x)=\frac{2*\frac{1}{x}}{\ln 9}\)

Simplify

\(\displaystyle f{}'(x)=\frac{2}{x\ln 9}\)

Example Question #33 : Other Differential Functions

Solve for \(\displaystyle f'(x)\) when

 \(\displaystyle f(x)= (x^2 +7x)(3x^3+\frac{x}{4})\)

Possible Answers:

\(\displaystyle f{}'(x)= 15x^4 + 21x^3 +255x^2 + 7x +7\)

\(\displaystyle f^{'}(x)=15x^{4}+84x^{3}+\frac{3x^{2}}{4}+\frac{7x}{2}\)

\(\displaystyle f'(x) = 81x^2 + \frac{x}{2}+\frac{7}{4}\)

\(\displaystyle f{}'(x)= 6x^4 +21x^3 +\frac{x^2}{2}+\frac{7x}{4}\)

Correct answer:

\(\displaystyle f^{'}(x)=15x^{4}+84x^{3}+\frac{3x^{2}}{4}+\frac{7x}{2}\)

Explanation:

\(\displaystyle f(x)= (x^2 +7x)(3x^3+\frac{x}{4})\)

Using the product rule: \(\displaystyle (fg){}'=f{}'g+fg{}'\)

 

\(\displaystyle f{}'(x)= (2x+7)(3x^3 + x/4) + (x^2+7x)(9x^2+1/4)\)

FOIL

\(\displaystyle f{}'(x)= 6x^4+2x^2/4+21x^3+7x/4+9x^4+x^2/4+63x^3+7x/4\)

Combine like-terms

\(\displaystyle f{}'(x)= 15x^4 + 84x^3+\frac{3x^2}{4}+\frac{14x}{4}\)

Example Question #33 : Other Differential Functions

Solve for \(\displaystyle y{}'\) using implicit differentiation if

 \(\displaystyle x^3y^2+sin(y)=11x-x^2y\)

Possible Answers:

\(\displaystyle y{}'=-2x+11-cos(y)-6x^2y\)

\(\displaystyle y{}'=-cos(y)+3x^2+2x-11\)

\(\displaystyle y{}'=\frac{2x^3y+cos(y)+x^2}{11-2xy-3x^2y^2}\)

\(\displaystyle y{}'=\frac{11-2xy-3x^2y^2}{2x^3y+cos(y)+x^2}\)

Correct answer:

\(\displaystyle y{}'=\frac{11-2xy-3x^2y^2}{2x^3y+cos(y)+x^2}\)

Explanation:

\(\displaystyle x^3y^2+sin(y)=11x-x^2y\)

Differentiate the equation

\(\displaystyle 3x^2y^2 + 2x^3y*y{}' + cos(y)*y{}' = 11-(2xy+x^2*y{}')\)

Simplify

\(\displaystyle 3x^2y^2 + 2x^3y*y{}' + cos(y)*y{}' = 11-2xy-x^2*y{}'\)

place all terms with \(\displaystyle y{}'\) on one side and the other terms on the other side

\(\displaystyle 2x^3y*y{}'+cos(y)*y{}'+x^2*y{}'=11-2xy-3x^2y^2\)

Simplify

\(\displaystyle y{}'*(2x^3y+cos(y)+x^2)=11-2xy-3x^2y^2\)

Divide and solve for \(\displaystyle y{}'\)

\(\displaystyle y{}'=\frac{11-2xy-3x^2y^2}{2x^3y+cos(y)+x^2}\)

Example Question #35 : Other Differential Functions

Solve for \(\displaystyle f{}'(c)\) using the Mean Value Theorem, rounded to the nearest hundredth place when

 \(\displaystyle f(x)=2x^4 - \frac{x^2}{7}\) on the interval \(\displaystyle \left [ 1,3 \right ]\)

Possible Answers:

\(\displaystyle 79.43\)

\(\displaystyle 83.91\)

\(\displaystyle 80.65\)

\(\displaystyle 75.24\)

Correct answer:

\(\displaystyle 79.43\)

Explanation:

Mean Value Theorem (MVT) =  \(\displaystyle f{}'(c)= \frac{f(b)-f(a)}{b-a}\) on \(\displaystyle \left [ a,b \right ]\)

\(\displaystyle f{}'(c)= \frac{(2(3)^4-\frac{(3)^2)}{7})- (2(1)^4-\frac{(1)^2}{7}))}{3-1}\)

\(\displaystyle f{}'(c)= 79.43\)

Example Question #34 : Other Differential Functions

Evaluate the limit:

\(\displaystyle Lim _{x \rightarrow -1} \frac{x^{^{2}}+4x+3}{x+1}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle Does Not Exist\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 2\)

Explanation:

Attempting to evaluate directly (plug in -1 for \(\displaystyle x\)) results in the indeterminate form: 

\(\displaystyle \frac{0}{0}\)

Further analysis is required:

\(\displaystyle Lim _{x \rightarrow -1} \frac{x^{^{2}}+4x+3}{x+1}\dot{} = Lim _{x \rightarrow -1} \frac{(x+3)(x+1)}{x+1}\dot{} =Lim _{x \rightarrow -1}x+3\)

This final form can be evaluated directly:

\(\displaystyle Lim _{x \rightarrow -1} x+3 = -1 + 3=2\)

Example Question #35 : Other Differential Functions

Evaluate the limit:

\(\displaystyle Lim _{x \rightarrow 2} \frac{x^2 +5x-14}{x-2}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 9\)

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle Does Not Exist\)

Correct answer:

\(\displaystyle 9\)

Explanation:

Attempting to evaluate directly (plug in 2 for \(\displaystyle x\)) results in the indeterminate form: 

\(\displaystyle \frac{0}{0}\)

Further analysis is required:

\(\displaystyle Lim _{x \rightarrow 2} \frac{x^2 +5x-14}{x-2}\dot{} = Lim _{x \rightarrow 2} \frac{(x+7)(x-2)}{x-2}\dot{} =Lim _{x \rightarrow 2}x+7\)

This final form can be evaluated directly:

\(\displaystyle Lim _{x \rightarrow 2} x+7 = 2+7=9\)

Example Question #38 : Other Differential Functions

Evaluate the limit:

\(\displaystyle Lim _{x \rightarrow 3} \frac{x^2 + 7x +6}{x-3}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 9\)

\(\displaystyle 4\)

\(\displaystyle 0\)

\(\displaystyle Does Not Exist\)

Correct answer:

\(\displaystyle Does Not Exist\)

Explanation:

We evaluate the limit directly (plug in 3 for \(\displaystyle x\)) and obtain:

\(\displaystyle \frac{36}{0}\)

from which we determine that the the function has a vertical asymptote at this point (it goes off to positive or negative infinity). The limit Does Not Exist.

Example Question #38 : Other Differential Functions

Given:

 \(\displaystyle Lim _{x \rightarrow 0} \frac{sinx}{x} = 1\)

\(\displaystyle Lim _{x \rightarrow 0} \frac{1 - cosx}{x} = 0\)

Evaluate the limit:

\(\displaystyle Lim _{x \rightarrow 0} xsecx\)

Possible Answers:

\(\displaystyle \pi\)

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle -1\)

\(\displaystyle Does Not Exist\)

Correct answer:

\(\displaystyle 0\)

Explanation:

This limit can be evaluated directly.

Recall that \(\displaystyle secx = \frac{1}{cosx}\)

So: 

\(\displaystyle Lim _{x \rightarrow 0} xsecx = Lim _{x \rightarrow 0} \frac{x}{cosx}= \frac{0}{1}=0\)

Example Question #36 : Other Differential Functions

Given:

 \(\displaystyle Lim _{x \rightarrow 0} \frac{sinx}{x} = 1\)

\(\displaystyle Lim _{x \rightarrow 0} \frac{1 - cosx}{x} = 0\)

Evaluate the limit:

\(\displaystyle Lim _{x \rightarrow 0} xcsc(2\pi x)\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle \frac{1}{2\pi}\)

\(\displaystyle 2\pi\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle DoesNotExist\)

Correct answer:

\(\displaystyle \frac{1}{2\pi}\)

Explanation:

First observe that \(\displaystyle xcsc(2\pi x) = \frac{x}{sin2\pi x}\)

Multiplying by \(\displaystyle \frac{2\pi x}{2\pi x}\) we obtain:

\(\displaystyle Lim _{x \rightarrow 0} \frac{2 \pi x*x}{2\pi x*sin2\pi x} = Lim _{x \rightarrow 0} \frac{2\pi x}{sin2\pi x}*\frac{x}{2\pi x}\)

Limit of product is the product of limits:

\(\displaystyle Lim _{x \rightarrow 0} \frac{2\pi x}{sin2\pi x}*\frac{x}{2\pi x}=Lim _{x \rightarrow 0} \frac{2\pi x}{sin2\pi x}*Lim _{x \rightarrow 0}\frac{x}{2\pi x}\)

From the Pre-Question Text: 

\(\displaystyle Lim _{x \rightarrow 0} \frac{sinx}{x} = 1\)

So:

\(\displaystyle Lim _{x \rightarrow 0} \frac{2\pi x}{sin2\pi x}*Lim _{x \rightarrow 0}\frac{x}{2\pi x}=1*\frac{1}{2\pi}=\frac{1}{2\pi}\)

Learning Tools by Varsity Tutors