Calculus 1 : Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2260 : Calculus

A very important physics formula is called the continuity equation. We will only consider the 1-dimensional continuity equation for now. 

In the continuity equation, we're given that:

, where  is a function of  and .

Rewrite the right side of the equation in integral form. 

Possible Answers:

Correct answer:

Explanation:

Recall that the fundamental theorem of calculus states that:

Using this knowledge we write the right side as:

Example Question #1231 : Functions

Solve the following integral, where a and b are constants:

Possible Answers:

Correct answer:

Explanation:

Keeping in mind that a and b are only constants, the integral is equal to

and was found using the following rule:

Example Question #2262 : Calculus

Evaluate the following integral:

Possible Answers:

Correct answer:

Explanation:

To evaluate the integral, we must make the following substitution:

The derivative was found using the following rule:

Rewrite the integral in terms of u and integrate:

The integral was found using the following rule:

Finally, replace u with our original term:

.

Example Question #2263 : Calculus

In circuits with a resistor, the equation for voltage drop is given by:

, where  is voltage,  is charge, and  is resistance. 

Write the equation as an integral expression for 

Possible Answers:

Correct answer:

Explanation:

Although this may seem really difficult, we only need to solve for 

To solve for , integrate both sides:

Example Question #1232 : Functions

Possible Answers:

Correct answer:

Explanation:

When integrating, remember to add one to the exponent and then put that result on the denominator: . Now evaluate at 2, and then 0. Then subtract the two results. .

Example Question #2265 : Calculus

Possible Answers:

Correct answer:

Explanation:

The first step here is to chop this up into three separate terms and then simplify since we have only one denominator: . Then, integrate each term, remembering to add one to the exponent and then put that result on the denominator: . Simplify to get your answer: . Remember to add C because it is an indefinite integral.

Example Question #183 : Integral Expressions

Possible Answers:

Correct answer:

Explanation:

First, chop this expression up into two terms: . Then, integrate each term, remembering that when there is a single x on a denominator, the integral is . Therefore, the integration is: . Remember to add C because it is an indefinite integral.

Example Question #1233 : Functions

Possible Answers:

Correct answer:

Explanation:

First, integrate each term separately. Remember, when integrating, raise the exponent by one and then also put that result on the denominator: . Then evaluate at 3 and then 0. Subtract two results to get: .

Example Question #1234 : Functions

Possible Answers:

Correct answer:

Explanation:

To integrate this expression, I would first rewrite it to be . Then, add one to the exponent and then put that result on the denominator: . Then, simplify to get your answer of . Remember to add C because it is an indefinite integral.

Example Question #1235 : Functions

Given the one-to-one equation f(x)=3x+1, the inverse function f-1(y)=

Possible Answers:

(y+1)/3

(y-1)/3

3x-1

undefined

(x-1)/3

Correct answer:

(y-1)/3

Explanation:

Before we solve the problem by computation, let's look at the answer choices and see if we can eliminate any answer choices. We know that an inverse function must exist because f(x) is one-to-one, so we can eliminate the answer choice "undefined." Next, we know that the inverse function has to be in terms of y, so we can eliminate the two answer choices with an "x." 

Now we can look at the two remaining answer choices.  Let y=f(x) and solve for x to find the inverse.

So f(x)=y=3x+1. Solve for x.

x=(y-1)/3

Therefore our answer is (y-1)/3.

Learning Tools by Varsity Tutors