Calculus 1 : How to find area of a region

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #81 : How To Find Area Of A Region

\displaystyle y=sinx

What is the area of the region created by the function and the given bounds \displaystyle -\pi and \displaystyle \pi?

Possible Answers:

\displaystyle 1

\displaystyle 0

\displaystyle \pi

\displaystyle 2

Correct answer:

\displaystyle 0

Explanation:

Set up your integral using the given bounds, then solve.

Remember the rules of trigonometric functions,

\displaystyle \int sin(x)=-cos(x).

Therefore our equation becomes,

\displaystyle \\ \int_{-\pi}^\pi sin(x) dx=-cos(x)]_{-\pi}^\pi\\ \\=-cos(\pi)-(-cos(-\pi))\\ \\=-(-1)-(-(-1))\\ \\=1-(1)=0.

Example Question #82 : How To Find Area Of A Region

\displaystyle y=\sqrt x

What is the area of the region created by the bounds \displaystyle y-axis  and \displaystyle x=4?

Possible Answers:

\displaystyle \frac{16}{3}

\displaystyle \frac{4\sqrt2}{3}

\displaystyle \frac{4}{3}

\displaystyle \frac{8}{3}

Correct answer:

\displaystyle \frac{16}{3}

Explanation:

Set up your integral using the given bounds, then solve by using the power rule

\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}

\displaystyle \\ \int_{0}^4 \sqrt x dx=\int_0^4x^{\frac{1}{2}} dx \\ \\=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\left|_0^4=\frac{2x^{\frac{3}{2}}}{3}\left|_0^4\\ \\=\frac{2(4)^{\frac{3}{2}}}{3}=\frac{2\cdot8}{3}\\ \\=\frac{16}{3}.

Example Question #81 : How To Find Area Of A Region

What is the area of the region created by the function \displaystyle y=-x^2+4 and the \displaystyle x-axis?

Possible Answers:

\displaystyle \frac{16}{3}

\displaystyle \frac{32}{3}

\displaystyle \frac{48}{3}

\displaystyle \frac{64}{3}

Correct answer:

\displaystyle \frac{32}{3}

Explanation:

First, graph the two functions in order to identify the boundaries of the region. You will find that they are \displaystyle [-2,2].

Therefore, when you set up your integral, it will be from \displaystyle -2 to \displaystyle 2.

Then solve the integral by using the power rule

\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}

\displaystyle \\ \int_{-2}^2-x^2+4dx=-\int_{-2}^2x^2dx+\int_{-2}^24dx\\ \\=-\frac{x^3}{3}|_{-2}^2+4x|_{-2}^2\\ \\=-\left[\frac{(2)^3}{3}-\frac{(-2)^3}{3}\right]+\left[4(2)-4(-2)\right]\\ \\=-\left[\frac{8}{3}-\frac{-8}{3}\right]+[8+8]\\ \\=-\left[\frac{16}{3}\right]+16\\ \\=\frac{32}{3}

Example Question #81 : How To Find Area Of A Region

What is the area of the region created by \displaystyle y=x+2 and the bounds \displaystyle y-axis and \displaystyle x=3?

Possible Answers:

\displaystyle \frac{-17}{2}

\displaystyle \frac{-3}{2}

\displaystyle \frac{21}{2}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle \frac{21}{2}

Explanation:

Set up your integral using the given bounds, then solve by using the power rule

\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}

\displaystyle \\ \int_0^3x+2dx=\int_0^3xdx+\int_0^32dx\\ \\=\frac{x^2}{2}|_0^3+2x|_0^3\\ \\=\left(\frac{(3)^2}{2}-0\right)+(2(3)-0)\\ \\=\frac{9}{2}+6\\ \\=\frac{21}{2}

Example Question #82 : How To Find Area Of A Region

Find the area created by \displaystyle y=2x+3 with the boudaries \displaystyle y-axis and \displaystyle x=6.

Possible Answers:

\displaystyle 54

\displaystyle 18

\displaystyle -18

\displaystyle -54

Correct answer:

\displaystyle 54

Explanation:

Set up your integral using the given bounds, then solve by using the power rule

\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}

\displaystyle \\ \int_0^6 2x+3 dx=\int_0^6 2x dx+\int_0^6 3 dx\\ \\=\frac{2x^2}{2}|_0^6+3x|_0^6\\ \\=(6)^2-(0)^2+[3(6)^2-3 (0)2]\\ \\=36+18\\ \\=54.

Example Question #161 : Regions

Find the area of the region encompassed by the curves \displaystyle f(x)=10-x^3 and \displaystyle g(x)=\frac{1}{2}x^2, and the y-axis.

Possible Answers:

\displaystyle \frac{34}{3}

\displaystyle \frac{43}{6}

\displaystyle 0

\displaystyle \frac{44}{3}

\displaystyle 10

Correct answer:

\displaystyle \frac{44}{3}

Explanation:

For this problem, we must first find the upper bound of the region, the x-value where the two curves intersect:

\displaystyle f(x_u)=g(x_u)

\displaystyle 10-x_u^3=\frac{1}{2}x_u^2

This equation holds for the value of \displaystyle x_u=2

Therefore the lower and upper bounds are \displaystyle x_l=0,x_u=2. The lower bound is known since we're told the region is bounded by the y-axis.

The area of the region is thus:

\displaystyle A=\int_{0}^{2}10-x^3-\frac{1}{2}x^2

\displaystyle A=10x-\frac{x^4}{4}-\frac{x^3}{6}|_0^2

\displaystyle A=(20-4-\frac{4}{3})-(0-0-0)

\displaystyle A=\frac{44}{3}

Example Question #161 : Regions

What is the area of \displaystyle y=\sin(x) on the interval \displaystyle [0,\pi/3]?

Possible Answers:

\displaystyle \pi/3

\displaystyle \frac{1}{2}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle \pi/6

\displaystyle \frac{\sqrt{2}}{\pi}

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

We slice the region into \displaystyle n thin vertical strips of thickness \displaystyle \Delta x and height \displaystyle \sin(x_{k}) and then sum up all \displaystyle n strips, each of area \displaystyle \sin(x_{k})\Delta x.

This gives us an approximate expression for the area:

 \displaystyle Area\approx \sum_{k=1}^{n}\sin(x_{k})\Delta x where \displaystyle x_{k}=0+k\Delta x and  \displaystyle \Delta x= \frac{\pi/3}{n}.

 

We take the limit as the number of slices approaches infinity over this interval and we get the definite integral:

\displaystyle \\ Area=\lim_{n\to\infty}\sum_{k=1}^{n}\sin{x_{k}}\Delta x\\ \\=\int_{0}^{\pi/3}\sin(x)dx\\ \\=-\cos(\pi/3)-[-\cos(0)])\\ \\=-\frac{1}{2}+1=\frac{1}{2}

Example Question #88 : How To Find Area Of A Region

Find the area under the curve \displaystyle f(x)=20-3x^2 in the region bounded by the \displaystyle x-axis, the lower bound \displaystyle x=1 and the upper bound \displaystyle x=2

Possible Answers:

\displaystyle 13

\displaystyle 9

\displaystyle 19

\displaystyle 17

\displaystyle 32

Correct answer:

\displaystyle 13

Explanation:

To find the area under the curve

\displaystyle f(x)=20-3x^2

Integrate it from the specified bounds:

\displaystyle A=\int_{1}^{2}(20-3x^2)dx=20x-x^3|_1^2

\displaystyle A=(40-8)-(20-1)=32-19

\displaystyle A=13

Example Question #4081 : Calculus

Find the area enclosed by the lines\displaystyle f(x)=\frac{1}{3}x\displaystyle g(x)=2x-10, and the x-axis.

Possible Answers:

\displaystyle 60

\displaystyle 22

\displaystyle 30

\displaystyle 102

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

The first step is determine the lower and upper x-values that define the area. There is a lower bound of zero that marks the transition for f(x) to move into negative y-values; however, g(x) is well into the negative at this point, so it'll be necessary to find a lower bound where it first begins to become negative. This will occur for a value of five:

\displaystyle g(5)=2(5)-10=0

 

This allows the creation of an initial integral:

\displaystyle A_1=\int_{0}^{5}\frac{1}{3}xdx

\displaystyle A_1=\frac{x^2}{6}|_0^5

\displaystyle A_1=\frac{25}{6}-0=\frac{25}{6}

 

Another upper bound can be found by determining the point where the two functions intersect:

\displaystyle \frac{1}{3}x=2x-10

\displaystyle \frac{5}{3}x=10

\displaystyle x=6

Now, integrate the difference of these functions over these final bounds:

\displaystyle A_2=\int_{5}^{6}\frac{1}{3}x-(2x-10)dx

\displaystyle A_2=\frac{x^2}{6}-x^2+10x|_5^6

\displaystyle A_2=(\frac{36}{6}-36+60)-(\frac{25}{6}-25+50)

\displaystyle A_2=\frac{11}{6}-11+10=\frac{5}{6}

The full area is now the sum of these two:

\displaystyle A=A_1+A_2

\displaystyle A=\frac{25}{6}+\frac{5}{6}=\frac{30}{6}

\displaystyle A=5

Example Question #85 : Area

\displaystyle f(x)=e^{2x}{}

Find the area under the curve drawn by the function \displaystyle f(x) on the interval of \displaystyle x=0 to \displaystyle x=4.

Possible Answers:

\displaystyle =0

\displaystyle =\frac{1}{2}e^{4}-e

\displaystyle =\frac{1}{2}e^{8}-1

\displaystyle =\frac{1}{2}e^{8}-\frac{1}{2}

\displaystyle =\frac{1}{2}e^{2}+\frac{1}{2}

Correct answer:

\displaystyle =\frac{1}{2}e^{8}-\frac{1}{2}

Explanation:

In order to find the area under \displaystyle f(x) on the interval of \displaystyle x=0 to \displaystyle x=4, you must evaluate the definite integral

 \displaystyle \int_{}0}^{4}f(x)dx{}

\displaystyle =\int_{}0}^{4}e^{2x}dx

First, antidifferentiate the function.

\displaystyle =-\frac{1}{2}e^{2x}\mid_{0}^{4}{}

Then, substitute values for \displaystyle x.

\displaystyle =\frac{1}{2}e^{2*4}-\frac{1}{2}e^{2*0}

Finally, evaluate in terms of \displaystyle e

\displaystyle =\frac{1}{2}e^{2*4}-\frac{1}{2}*(1)

\displaystyle =\frac{1}{2}e^{8}-\frac{1}{2}

Learning Tools by Varsity Tutors