Calculus 1 : How to find differential functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #292 : Functions

Find the differential of the following equation

\displaystyle y=cos(x)x^2

Possible Answers:

\displaystyle dy=(2xsin(x)+x^2sin(x))dx

\displaystyle dy=(2xcos(x)-x^2sin(x))dx

\displaystyle dy=(2xcos(x)+x^2)dx

\displaystyle dy=(2cos(x)-x^2sin(x))dx

Correct answer:

\displaystyle dy=(2xcos(x)-x^2sin(x))dx

Explanation:

The differential of \displaystyle y is \displaystyle dy.

To find the differential of the right side of the equation, take the derivative of each term as you apply the product rule.

The product rule is:

\displaystyle (second\quad term)\cdot d(first\quad term)+(first\quad term)\cdot d(second\quad term), so applying that rule to the equation yields:

 \displaystyle dy=(2xcos(x)+x^2sin(x))dx

Example Question #292 : Functions

Find the differential of the following equation.

\displaystyle y=x^{3}e^{x}

Possible Answers:

\displaystyle dy=(3x^{2}e^{x}-x^{2}e^{x}})dx

\displaystyle dy=(3x^{2}e^{x}+x^{3}e^{x}})dx

\displaystyle dy=(3xe^{x}+x^{3}e^{x}})dx

\displaystyle dy=(3x^{2}e^{x}+x^{3}e^{x}})dx

Correct answer:

\displaystyle dy=(3x^{2}e^{x}+x^{3}e^{x}})dx

Explanation:

The differential of \displaystyle y is \displaystyle dy.

To find the differential of the right side of the equation, take the derivative of each term as you apply the product rule.

The product rule is: 

\displaystyle (second\quad term)\cdot d(first\quad term) + (first\quad term)\cdot d(second\quad term), so applying that rule to the equation yields: 

\displaystyle dy=(3x^{2}e^{x}+x^{3}e^{x}})dx

Example Question #113 : How To Find Differential Functions

Find the differential of the following equation.

\displaystyle y=4x^{3}-e^{-x}

Possible Answers:

\displaystyle dy=(12x+e^{-x})dx

\displaystyle dy=(12x^{2}-e^{-x})dx

\displaystyle dy=(12x^{2}+e^{x})dx

\displaystyle dy=(12x^{2}+e^{-x})dx

Correct answer:

\displaystyle dy=(12x^{2}+e^{-x})dx

Explanation:

The differential of \displaystyle y is \displaystyle dy.

To find the differential of the right side of the equation, take the derivative of each term as follows.

The derivative of anything in the form of \displaystyle x^n is \displaystyle n{x^{n-1}}, and the derivative of \displaystyle -e^{-x}is \displaystyle e^{-x} so applying that rule to all of the terms yields: 

\displaystyle dy=(12x^{2}+e^{-x})dx

Example Question #111 : How To Find Differential Functions

\displaystyle f(x)=(3x^{2}+2x)^{3}

Find

\displaystyle \frac{d}{dx}f(x).

Possible Answers:

\displaystyle 3(6x+2)^2

\displaystyle (6x+2)^3

\displaystyle (18x+6)(3x^2+2x)^2

\displaystyle 3(3x^2+2x)^2

\displaystyle (3x^2+2x)^3(6x+2)

Correct answer:

\displaystyle (18x+6)(3x^2+2x)^2

Explanation:

Let \displaystyle g(x)=3x^2+2x.

Then \displaystyle f(x) = g(x)^3.

By the chain rule,

\displaystyle \frac{df}{dx}=\frac{df}{dg}\frac{dg}{dx}

\displaystyle \frac{df}{dg}=3g(x)^2\displaystyle \frac{dg}{dx}=6x+2

Plugging everything in we get

\displaystyle \frac{df}{dx}=3(3x^2+2x)^2(6x+2)=(18x+6)(3x^2+2x)^2

 

Example Question #1331 : Calculus

Let \displaystyle f(x)=\frac{x^2}{e^x+3x^3}

Find 

\displaystyle \frac{d}{dx}f(x).

Possible Answers:

\displaystyle \frac{(e^x+3x^3)^2-x^2(e^x+9x^2)}{(e^x+3x^3)^2}

\displaystyle \frac{(e^x+3x^3)-x^2(e^x+9x^2)}{(e^x+3x^3)}

\displaystyle \frac{2x(e^x+3x^3)-x^2(e^x+9x^2)}{(e^x+3x^3)}

\displaystyle \frac{2x(e^x+3x^3)-x^2(e^x+9x^2)}{(e^x+3x^3)^2}

\displaystyle \frac{(e^x+3x^3)-x^2(e^x+9x^2)}{(e^x+3x^3)^2}

Correct answer:

\displaystyle \frac{2x(e^x+3x^3)-x^2(e^x+9x^2)}{(e^x+3x^3)^2}

Explanation:

Let \displaystyle g(x)=x^2 and \displaystyle h(x)=(e^x+ex^3)^{-1}.

So \displaystyle f(x)=g(x)h(x).

By the product rule:

\displaystyle \frac{df}{dx}=g'h+h'g

Where \displaystyle h'=\frac{dh}{dx} and \displaystyle g'=\frac{dg}{dx}.

Therefore,

\displaystyle g'=2x

\displaystyle h'=-(e^x+3x^3)^{-2}(e^x+9x^2)

Plugging everything in and simplifying we get:

\displaystyle \frac{df}{dx}=\frac{2x(e^x+3x^3)-x^2(e^x+9x^2)}{(e^x+3x^3)^2}

Example Question #111 : Other Differential Functions

Let \displaystyle f(x)=ln[x^3e^x]

Find 

\displaystyle \frac{d}{dx}f(x).

Possible Answers:

\displaystyle ln[x^3e^x]

\displaystyle \frac{1}{x^3e^x}

\displaystyle ln[x^3e^x]^{-1}(3x^2e^x+x^3e^x)

\displaystyle ln[3x^2e^x+x^3e^x]

\displaystyle \frac{3}{x}+1

Correct answer:

\displaystyle \frac{3}{x}+1

Explanation:

We can simplify the function by using the properties of logarithms.

\displaystyle f(x)=ln[x^3]+ln[e^x]=3ln[x]+x

With the simplified form, we can now find the derivative using the power rule which states,

\displaystyle f(x)=x^n \rightarrow f'(x)=nx^{n-1}

Also we will need to use the product rule which is,

\displaystyle f(x)=g(x)h(x)\rightarrow f'(x)=g(x)h'(x)+h(x)g'(x).

Remember that the derivative of \displaystyle ln(x)\rightarrow \frac{1}{x}.

Applying these rules we find the derivative to be as follows.

\displaystyle \frac{df}{dx}=\frac{d}{dx}[3ln[x]+x]=\frac{3}{x}+1

 

Example Question #301 : Functions

Let \displaystyle f(x)=3^x.

Find 

\displaystyle \frac{d}{dx}f(x).

Possible Answers:

\displaystyle ln(3)3^x

\displaystyle (x-1)3^{x-1}

\displaystyle log_3(3)3^x

\displaystyle x3^{x-1}

\displaystyle ln(x)3^x

Correct answer:

\displaystyle ln(3)3^x

Explanation:

For a function of the form \displaystyle f(x)=a^x the derivative is by definition:

\displaystyle \frac{d}{dx}f(x)=f'(x)=ln(a)a^x.

Therefore,

\displaystyle f(x)=3^x\rightarrow f'(x)=3^xln(x).

Example Question #1333 : Calculus

Let \displaystyle f(x)=sin^2(x)

Find 

\displaystyle \frac{d}{dx}f(x).

Possible Answers:

\displaystyle 2cos(x)sin(x)

\displaystyle cos^2(x)

\displaystyle cos(x)+sin(x)

\displaystyle 2sin(x)

\displaystyle sin^2(x)cos^2(x)

Correct answer:

\displaystyle 2cos(x)sin(x)

Explanation:

Recall that, 

\displaystyle sin^2(x)=sin(x)sin(x)

Using the product rule

\displaystyle \frac{d}{dx}sin^2(x)=cos(x)sin(x)+sin(x)cos(x)=2cos(x)sin(x)

Example Question #112 : How To Find Differential Functions

Compute the differential for the following.

\displaystyle y=9t^2+24t-50

Possible Answers:

\displaystyle dy=(18t+24)dt

\displaystyle dy=(18t+24t)dt

\displaystyle dy=(18t^2+24)dt

\displaystyle dy=(18t+24)^2dt

\displaystyle dy=(18t^4+24t^2-50t)dt

Correct answer:

\displaystyle dy=(18t+24)dt

Explanation:

To compute the differential of the function we will need to use the power rule which states,

\displaystyle y=x^n \rightarrow dy=nx^{n-1}.

Applying the power rule we get: 

\displaystyle \frac{dy}{dt}=18t+24

From here solve for dy: 

\displaystyle dy=(18t+24)dt

Example Question #1334 : Calculus

Compute the differential for the following function.

\displaystyle y=7x^3+cos(x)

Possible Answers:

\displaystyle dy=(21x^2+cos(x))dx

\displaystyle dy=(21x^2-sin(x))dx

\displaystyle dy=(21x^2-cos(x))dx

\displaystyle dy=(21x^2+sin(x))dx

\displaystyle dy=(21x^2-sin(x)cos(x))dx

Correct answer:

\displaystyle dy=(21x^2-sin(x))dx

Explanation:

Using the power rule,

\displaystyle y=x^n \rightarrow dy=nx^{n-1}dx

the derivative of \displaystyle 7x^3 becomes \displaystyle 21x^2.

Using trigonometric identities, the derivative of \displaystyle cos(x) is \displaystyle -sin(x)

Therefore, 

\displaystyle \frac{dy}{dx}=21x^2-sin(x)

\displaystyle dy=(21x^2-sin(x))dx

Learning Tools by Varsity Tutors