All Calculus 2 Resources
Example Questions
Example Question #144 : Polar
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Example Question #11 : Derivatives Of Polar Form
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #11 : Derivatives Of Polar Form
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #144 : Polar
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #141 : Polar
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #313 : Parametric, Polar, And Vector
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #822 : Calculus Ii
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the numerator, we get:
Example Question #315 : Parametric, Polar, And Vector
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #21 : Polar Form
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Example Question #21 : Derivatives Of Polar Form
What is the derivative of ?
In order to find the derivative of a polar equation
, we must first find the derivative of
with respect to
as follows:
We can then swap the given values of and
into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that
. Swapping this into the denominator, we get:
Certified Tutor
Certified Tutor
All Calculus 2 Resources
![Learning Tools by Varsity Tutors](https://vt-vtwa-app-assets.varsitytutors.com/assets/problems/og_image_practice_problems-9cd7cd1b01009043c4576617bc620d0d5f9d58294f59b6d6556fd8365f7440cf.jpg)