Calculus 2 : Graphing Polar Form

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #271 : Parametric, Polar, And Vector

Describe the graph of  \(\displaystyle rcos\theta=-2\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

line passing through the origin and \(\displaystyle \theta=-2\)

circle centered around the origin with a radius of \(\displaystyle r=-2\)

horizontal line at \(\displaystyle y=-2\)

vertical line at \(\displaystyle x=-2\)

Correct answer:

vertical line at \(\displaystyle x=-2\)

Explanation:

Graphing polar equations is different that plotting cartesian equations. Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

Using the identity \(\displaystyle x=rcos\theta\), we see the graph of \(\displaystyle rcos\theta=-2\) will have the same shape as the graph \(\displaystyle x=-2\), or a vertical line at \(\displaystyle x=-2\).

 Fig3

Example Question #272 : Parametric, Polar, And Vector

Describe the graph of  \(\displaystyle rsin\theta=1\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

vertical line at \(\displaystyle x=1\)

circle centered at the origin with a radius of \(\displaystyle r=1\)

horizontal line at \(\displaystyle y=1\)

line passing through the origin and \(\displaystyle \theta=1\)

Correct answer:

horizontal line at \(\displaystyle y=1\)

Explanation:

Graphing polar equations is different that plotting cartesian equations. Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

Using the identity \(\displaystyle y=rsin\theta\), we see the graph of \(\displaystyle rsin\theta=1\) will have the same shape as the graph \(\displaystyle y=1\), or a horizontal line at \(\displaystyle y=1\).

Fig4

Example Question #13 : Graphing Polar Form

 Describe the graph of  \(\displaystyle r=4cos\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

circle centered around \(\displaystyle (0,2)\) with a radius of \(\displaystyle 4\)

line passing through the origin and \(\displaystyle x=4\)

circle centered around \(\displaystyle (2,0)\) with a radius of \(\displaystyle 2\)

circle centered around \(\displaystyle (4,0)\) with a radius of \(\displaystyle 4\)

Correct answer:

circle centered around \(\displaystyle (2,0)\) with a radius of \(\displaystyle 2\)

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

Substituting values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, we find values of r. We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  We get the graph below, a circle centered around \(\displaystyle (2,0)\) with a radius of \(\displaystyle 2\).

Fig5

Example Question #14 : Graphing Polar Form

Describe the graph of  \(\displaystyle r=-6sin\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

circle centered around \(\displaystyle (-6,0)\) with a radius of \(\displaystyle 3\)

circle centered around \(\displaystyle (0,-3)\) with a radius of \(\displaystyle 3\)

circle centered around \(\displaystyle (0,-6)\) with a radius of \(\displaystyle 6\)

circle centered around \(\displaystyle (0,-3)\) with a radius of \(\displaystyle 6\)

Correct answer:

circle centered around \(\displaystyle (0,-3)\) with a radius of \(\displaystyle 3\)

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

Substituting values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, we find values of r. We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle. We get the graph below, a circle centered around \(\displaystyle (0,-3)\) with a radius of \(\displaystyle 3\).

Fig6

Example Question #15 : Graphing Polar Form

Describe the graph of \(\displaystyle r=5+5cos\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

an upright cardioid 

a cardioid (heart shape) rotated \(\displaystyle 90^{\circ}\) left

a cardioid (heart shape) rotated \(\displaystyle 90^{\circ}\) right

an upside-down cardioid 

Correct answer:

a cardioid (heart shape) rotated \(\displaystyle 90^{\circ}\) left

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

From our equation, we know the shape of our graph will be a cardioid because our equation is in the form \(\displaystyle r=a\pm bcos\theta\) where \(\displaystyle a=b\).  Our cardioid is symmetric about the x-axis because our equation includes the \(\displaystyle cosine\) function  The point of the cardioid is at the origin. The y-intercepts are at \(\displaystyle (0,a)\) and \(\displaystyle (0,-a)\). The x-intercept is at \(\displaystyle (a+b,0)\).

We could also substitute values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, to find values of r. We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  

We get the graph below, a cardioid (heart shape) rotated \(\displaystyle 90^{\circ}\) left.

Fig7

 

 

Example Question #16 : Graphing Polar Form

Describe the graph of \(\displaystyle r=3-3sin\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

an upside down cardioid (heart shape)

an upright cardioid (heart shape)

a cardioid (heart shape) rotated \(\displaystyle 90^{\circ}\) right

a cardioid (heart shape) rotated \(\displaystyle 90^{\circ}\) left

Correct answer:

an upright cardioid (heart shape)

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

 From our equation, we know the shape of our graph will be a cardioid because our equation is in the form \(\displaystyle r=a\pm bsin\theta\) where \(\displaystyle a=b\).  Our cardioid is symmetric about the y-axis because our equation includes the \(\displaystyle sine\) function. The point of the cardioid is at the origin.  The x-intercepts are at \(\displaystyle (a,0)\) and \(\displaystyle (-a,0)\).  The y-intercept is at \(\displaystyle (0,a+b)\).

We could also substitute values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, to find values of r.  We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  

We get the graph below, an upright cardioid (heart shape).

 

 Fig8

Example Question #111 : Polar

Describe the graph of \(\displaystyle r=4+2sin\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

A limacon without a loop rotated \(\displaystyle 90^{\circ}\) right

An upright limacon without a loop

An upside-down limacon without a loop

A limacon without a loop rotated \(\displaystyle 90^{\circ}\) left

Correct answer:

An upside-down limacon without a loop

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

From our equation, we know the shape of our graph will be a limacon  because our equation is in the form \(\displaystyle r=a\pm bsin\theta\) where \(\displaystyle a>b\). This limacon will have no loop because \(\displaystyle a/b>1\). Our limacon is symmetric about the y-axis because our equation includes the \(\displaystyle sine\) function.  The x-intercepts are at \(\displaystyle (a,0)\) and \(\displaystyle (-a,0)\).  The y-intercept is at \(\displaystyle (0,a+b)\).

We could also substitute values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, to find values of r. We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  

We get the graph below, an upside-down limacon.

 

 Fig9

Example Question #11 : Graphing Polar Form

Describe the graph of \(\displaystyle r=9-6cos\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

A limacon without a loop rotated \(\displaystyle 90^{\circ}\) left

A limacon without a loop rotated \(\displaystyle 90^{\circ}\) right

An upright limacon without a loop

An upside down limacon without a loop

Correct answer:

A limacon without a loop rotated \(\displaystyle 90^{\circ}\) right

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

From our equation, we know the shape of our graph will be a limacon  because our equation is in the form \(\displaystyle r=a\pm bcos\theta\) where \(\displaystyle a>b\).  This limacon will have no loop because \(\displaystyle a/b>1\). Our limacon is symmetric about the x-axis because our equation includes the \(\displaystyle cosine\) function. The y-intercepts are at \(\displaystyle (0,a)\) and \(\displaystyle (0,-a)\).  The x-intercept is at \(\displaystyle -(a+b,0)\).

We could also substitute values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, to find values of r.  We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  

We get the graph below, an limacon turned \(\displaystyle 90^{\circ}\) right.

 

 Fig10

Example Question #19 : Graphing Polar Form

Describe the graph of \(\displaystyle r=3+6cos\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

a limacon with a loop turned \(\displaystyle 90^{\circ}\) left

a limacon with a loop turned \(\displaystyle 90^{\circ}\) right

an upright limacon with a loop

an upside-down limacon with a loop

Correct answer:

a limacon with a loop turned \(\displaystyle 90^{\circ}\) left

Explanation:

Graphing polar equations is different that plotting cartesian equations.  Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

From our equation, we know the shape of our graph will be a limacon because our equation is in the form \(\displaystyle r=a\pm bcos\theta\) where \(\displaystyle a< b\). This limacon will have a loop because \(\displaystyle a/b< 1\). The length of the loop is \(\displaystyle b-a\).  Our limacon is symmetric about the x-axis because our equation includes the \(\displaystyle cosine\) function. The y-intercepts are at \(\displaystyle (0,a)\) and \(\displaystyle (0,-a)\).  The x-intercept is at \(\displaystyle (a+b,0)\).

We could also substitute values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, to find values of r. We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  

We get the graph below, a limacon with a loop turned \(\displaystyle 90^{\circ}\) left.

 

 Fig11

Example Question #20 : Graphing Polar Form

Describe the graph of  \(\displaystyle r=4-7sin\theta\) from \(\displaystyle 0\leq\theta\leq2\pi\).

Possible Answers:

a limacon with a loop turned \(\displaystyle 90^{\circ}\) right

an upside-down limacon with a loop 

a limacon with a loop turned \(\displaystyle 90^{\circ}\) left

an upright limacon with a loop 

Correct answer:

an upright limacon with a loop 

Explanation:

Graphing polar equations is different that plotting cartesian equations. Instead of plotting an \(\displaystyle (x,y)\) coordinate, polar graphs consist of an \(\displaystyle (r,\theta)\) coordinate where \(\displaystyle r\) is the radial distance of a point from the origin and \(\displaystyle \theta\) is the angle above the x-axis.

From our equation, we know the shape of our graph will be a limacon  because our equation is in the form \(\displaystyle r=a\pm bsin\theta\) where \(\displaystyle a< b\).  This limacon will have a loop because \(\displaystyle a/b< 1\). The length of the loop is \(\displaystyle b-a\).  Our limacon is symmetric about the y-axis because our equation includes the \(\displaystyle sine\) function. The x-intercepts are at \(\displaystyle (a,0)\) and \(\displaystyle (-a,0)\). The y-intercept is at \(\displaystyle -(0,a+b)\).

We could also substitute values of \(\displaystyle \theta\) (in radians) between \(\displaystyle 0\) and \(\displaystyle 2\pi\) into our expression, to find values of r. We then plot each ordered pair, \(\displaystyle (r,\theta)\), using the \(\displaystyle r\) value as the radius and \(\displaystyle \theta\) as the angle.  

We get the graph below, an upright limacon with a loop.

 Fig12

Learning Tools by Varsity Tutors