Calculus 2 : Finding Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #671 : Finding Integrals

Integrate

 

\(\displaystyle \int{6x\ln\left(\frac{7}{2}x^2+3\right)}dx\)



Possible Answers:

\(\displaystyle =\left(3x^2+\frac{3}{4}\right)\left[\ln\left(6x^2+3 \right )+1\right] +C\)

\(\displaystyle =\left(3x^2+\frac{3}{2}\right)\left[\ln\left(\frac{3}{2}x^2+1 \right )-1\right] +C\)

\(\displaystyle =\left(3x^2+\frac{18}{7}\right)\left[\ln\left(\frac{7}{2}x^2+3 \right )-1\right] +C\)

\(\displaystyle =\left(3x^2+\frac{7}{18}\right)\ln\left(\frac{9}{2}x^2+3 \right ) +C\)

\(\displaystyle =\left(3x^2+\frac{18}{7}\right)\left[\ln\left(\frac{7}{2}x^2+3 \right )-1\right] +C\)

Correct answer:

\(\displaystyle =\left(3x^2+\frac{18}{7}\right)\left[\ln\left(\frac{7}{2}x^2+3 \right )-1\right] +C\)

Explanation:

\(\displaystyle \int{6x\ln\left(\frac{7}{2}x^2+3\right)}dx\)                                                       (1)

1) Simplify with a substitution. 

It is often necessary to define a new variable \(\displaystyle u\), carefully chosen so that rewriting the integrand in terms of this new variable will make integration easier. In this case, the obvious variable to introduce will be defined by, 

\(\displaystyle u =\frac{7}{2}x^2+3\)                                                                      (2)

\(\displaystyle du=7xdx\)                                                                         (3)

 

Use equations (2) and (3) to rewrite (1).  

 

\(\displaystyle \int{6x\ln\left(\frac{7}{2}x^2+3\right)}dx=\frac{6}{7}\int{\ln\left(\frac{7}{2}x^2+3\right)} \underset{du}{ \underbrace{7xdx}}=\frac{6}{7}\int\ln udu\)

 

 2) Use integration by parts

To compute \(\displaystyle \int \ln udu\) use integration by parts. Ignore the constant out front for the moment, 

 

\(\displaystyle \int vw'=vw-\int v'w\)                                                 (4)

Define \(\displaystyle v\) and \(\displaystyle w\) and insert into the equation (4). 

 \(\displaystyle v=\ln u\) 

 \(\displaystyle w = u\),

 \(\displaystyle v'=\frac{1}{u}du\)

\(\displaystyle w'=du\)

 

 \(\displaystyle \int\ln udu=u\ln u-\int u\left(\frac{1}{u}du \right )\)

 

\(\displaystyle \int\ln udu=u\ln u-u+C\)                                               (5)

 

Let's factor the non-constant terms in equation (5), this will make the result easier to express when we convert back to \(\displaystyle x.\)

\(\displaystyle [u(\ln u-1)]+C\)

 

We previously had a constant in front of the integral, 

\(\displaystyle \frac{6}{7}\int\ln(u)du =\frac{6}{7}[u(\ln u-1)]+C\) 

 

Now we can write the integral terms of the original variable \(\displaystyle x\) by substituting equation (2) into the previous expression to obtain, 

 

\(\displaystyle =\frac{6}{7}\left(\frac{7}{2}x^2+3\right )\left[\ln\left(\frac{7}{2}x^2+3\right)-1\right]+C\)

 

 

\(\displaystyle =\left(3x^2+\frac{18}{7}\right)\left[\ln\left(\frac{7}{2}x^2+3 \right )-1\right] +C\)

Example Question #671 : Finding Integrals

Evaluate the integral:

\(\displaystyle \int \frac{dx}{\sqrt{x+2}}\)

Possible Answers:

\(\displaystyle 2\sqrt{x+2}+C\)

\(\displaystyle \frac{\sqrt{x+2}}{2}+C\)

\(\displaystyle \sqrt{x+2}+C\)

\(\displaystyle 2\sqrt{x+2}\)

Correct answer:

\(\displaystyle 2\sqrt{x+2}+C\)

Explanation:

To evaluate the integral, we perform the following substitution:

\(\displaystyle u=(x+2)^{\frac{1}{2}}\)

\(\displaystyle du=\frac{1}{2}(x+2)^{-\frac{1}{2}}dx\)

The derivative was found using the following rule:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)

Now, we rewrite the integrand and integrate:

\(\displaystyle 2\int du=2u+C\)

The integral was performed using the following rule:

\(\displaystyle \int dx=x+C\)

Finally, replace u with our original x term:

\(\displaystyle 2\sqrt{x+2}+C\)

Example Question #1022 : Integrals

The Laplace Transform is an integral transform that converts functions from the time domain \(\displaystyle t\) to the complex frequency domain \(\displaystyle s\). The transformation of a function \(\displaystyle f(t)\) into its complex frequency function  \(\displaystyle F(s)\) is given by:

\(\displaystyle F(s)= \int_{0}^{\infty}e^{-st}*f(t) dt\)

Where \(\displaystyle s=a+bi\), where \(\displaystyle a\) and \(\displaystyle b\) are constants and \(\displaystyle i\) is the imaginary number. 

Evaluate the Laplace Transform of the function \(\displaystyle f(t)\) at time \(\displaystyle t-a\). Suppose that \(\displaystyle f(t)=0\) when \(\displaystyle t \leq a\)

Possible Answers:

\(\displaystyle saF(s)\)

\(\displaystyle F(s-a)\)

\(\displaystyle e^{-sa}F(s)\)

\(\displaystyle e^{sa}F(s)\)

Correct answer:

\(\displaystyle e^{-sa}F(s)\)

Explanation:

The Laplace Transform will be given by:

\(\displaystyle \int_{0}^{\infty}e^{-s(t-a)}*f(t-a) dt\)

Since \(\displaystyle f(t-a)=0\) when \(\displaystyle t \leq a\), we can change the integral to:

 

\(\displaystyle \int_{a}^{\infty}e^{-st}*f(t-a) dt\)

This is because when you change the lower bound of the integral, the exponent will only exist for values for which \(\displaystyle f\) is defined. 

Let \(\displaystyle U=t-a\)

\(\displaystyle t=U+a\)

\(\displaystyle \frac{dU}{dt}=1\)

This changes our integral to:

\(\displaystyle \int_{a}^{\infty}e^{-s(U+a)}*f(U) dU\)

We can now move the \(\displaystyle e^{-sa}\) term out of the integral, which will give us:

\(\displaystyle e^{-sa}\int_{a}^{\infty}e^{-sU}*f(U) dU=e^{-sa} F(s)\)

Example Question #1021 : Integrals

Evaluate the following integral using substitution:

\(\displaystyle \int\frac{18x^2}{(3x^3+7)^2}dx\)

Possible Answers:

\(\displaystyle \frac{4}{9(3x^3+7)^3}+C\)

\(\displaystyle -\frac{4}{(3x^3+7)^3}+C\)

\(\displaystyle -\frac{2}{3x^3+7}+C\)

\(\displaystyle -\frac{4}{9(3x^3+7)^3}+C\)

\(\displaystyle -\frac{1}{9(3x^3+7)}+C\)

Correct answer:

\(\displaystyle -\frac{2}{3x^3+7}+C\)

Explanation:

To evaluate this integral, we first make the following substitution:

\(\displaystyle u=3x^3+7\)

Differentiating this expression, we get:

\(\displaystyle du=9x^2 dx\rightarrow x^2dx=\frac{1}{9}du\)

Now, we can rewrite the original integral with our substitution and solve:

\(\displaystyle \int\frac{18x^2}{(3x^3+7)^2}dx=\int\frac{18}{u^2}\frac{du}{9}=\int2u^{-2}du=-2u^{-1}+C\)

Finally, we have to replace with our earlier definition:

\(\displaystyle -2u^{-1}+C=-\frac{2}{3x+7}+C\)

Example Question #1024 : Integrals

In exponentially decaying systems, often times the solutions to differential equations take on the form of an integral called Duhamel's Integral. This is given by:

\(\displaystyle g(t)=\int_{0}^{t}e^{-s(t-b)}*f(b) db\)

Where \(\displaystyle s\) is a constant and \(\displaystyle f(b)\) is a function that represents an external force. 

Suppose I introduce growth factors that effect my population at a rate of 

\(\displaystyle f(b)=e^{kb}\). At what rate \(\displaystyle k\) do I need in order for my population to grow? (Hint: Find \(\displaystyle g\) and determine for what \(\displaystyle k\) will \(\displaystyle g\) increase in time.)

Possible Answers:

\(\displaystyle k\geq -s\)

\(\displaystyle k>0\)

\(\displaystyle k > s\)

\(\displaystyle s>k\)

Correct answer:

\(\displaystyle k>0\)

Explanation:

Start by substituting \(\displaystyle f(b)=e^{kb}\) into the integral to get:

\(\displaystyle g(t)=\int_{0}^{t}e^{-s(t-b)}*e^{kb} db\)

We can combine this into one large term:

\(\displaystyle g(t)=\int_{0}^{t}e^{-s(t-b)+kb} db\)

\(\displaystyle u=-st+sb+kb\)

\(\displaystyle \frac{du}{db}=s+k\)

\(\displaystyle db=\frac{u}{s+k}\)

\(\displaystyle g(t)=\frac{1}{s+k}\int_{0}^{t}e^{u} du\)

Since \(\displaystyle \int e^u=e^u\).

\(\displaystyle g(t)=\frac{1}{s+k}[e^u]_{0}^{t}=\frac{1}{s+k}[e^{-st+sb+kb}]_{0}^{t}= \frac{1}{s+k}[e^{kt}-e^{-st}]\)

This can only grow when: 

\(\displaystyle k > 0\) 

Example Question #671 : Finding Integrals

Evaluate the integral with a substitution, 

 

\(\displaystyle \small \small \int\frac{ \sin(\ln x)}{x} dx\)

 

Possible Answers:

\(\displaystyle \small \small \small \cos(\ln x)+\frac{1}{x}+C\)

\(\displaystyle \small -\sin(\ln x)+\cos(\ln x)+C\)

\(\displaystyle \small \small - \cos(\ln x) + C\)

\(\displaystyle \small \frac{\ln x}{x}+\sin(\ln x)\)

\(\displaystyle \small \small -\sin(\ln x) + C\)

Correct answer:

\(\displaystyle \small \small - \cos(\ln x) + C\)

Explanation:

\(\displaystyle \small \small \int\frac{ \sin(\ln x)}{x} dx\)

Let

\(\displaystyle \small u = ln(x)\)

 

\(\displaystyle \small du =\frac{1}{x}dx\)

 

\(\displaystyle \small \small \small \small \int\frac{ \sin(\ln x)}{x} dx=\int\sin(u)du=-\cos(u)\)

We can now convert this back to a function of \(\displaystyle \small x\) by substituting \(\displaystyle \small u = \ln x\)

\(\displaystyle \small -\cos(u)=-\cos(\ln x)\)

 

\(\displaystyle \small \small \small \small \small \int\frac{ \sin(\ln x)}{x} dx = - \cos(\ln x)\)

 

Example Question #91 : Solving Integrals By Substitution

Calculate the following integral: \(\displaystyle \int \frac{x}{x+2}dx\)

Possible Answers:

\(\displaystyle x+2-ln\left |x+2 \right |+C\)

\(\displaystyle 2x-2ln\left |x+2 \right |+C\)

\(\displaystyle x+2-\frac{1}{2}ln\left |x+2 \right |+C\)

\(\displaystyle x-2ln\left |x+2 \right |+C\)

Correct answer:

\(\displaystyle x-2ln\left |x+2 \right |+C\)

Explanation:

\(\displaystyle \int \frac{x}{x+2}dx\)

Add 2 and subtract 2 from the numerator of the integrand:\(\displaystyle \int \frac{x}{x+2}dx=\int \frac{x+2-2}{x+2}dx\).

Simplify and apply the difference rule:\(\displaystyle \int \frac{x+2-2}{x+2}dx=\int (\frac{x+2}{x+2}-\frac{x}{x+2})dx=\int dx-\int \frac{2}{x+2}dx\)

Solve the first integral: \(\displaystyle \int dx=x+C\).

Make the following substitution to solve the second integral: \(\displaystyle u=x+2\) \(\displaystyle du=dx\)

Apply the substitution to the integral: \(\displaystyle \int \frac{2}{x+2}dx=2\int\frac{du}{u}\)

Solve the integral:\(\displaystyle 2\int\frac{du}{u}=2ln\left | x+2\right |+C\)

Combine the answers to the two integrals: \(\displaystyle \int dx-\int \frac{2}{x+2}dx=x-2ln\left | x+2\right |+C\).

Solution: \(\displaystyle \int \frac{x}{x+2}dx=x-2ln\left | x+2\right |+C\)

Example Question #672 : Finding Integrals

Evaluate the Integral:

\(\displaystyle \int \frac{sin(x)}{2+cos(x)}dx\)

Possible Answers:

\(\displaystyle ln(cos(x)+2)+c\)

\(\displaystyle ln(cos(x)-2)+c\)

\(\displaystyle ln(cos(x))+2+c\)

\(\displaystyle -ln(cos(x)-2)+c\)

\(\displaystyle -ln(2+cos(x))+c\)

Correct answer:

\(\displaystyle -ln(2+cos(x))+c\)

Explanation:

We use substitution to solve the problem:

Let  \(\displaystyle u=2+cos(x)\)  and  \(\displaystyle du=-sin(x)dx\)  \(\displaystyle \Rightarrow sinxdx=-du\)

Therefore:

\(\displaystyle \int \frac{sin(x)}{2+cos(x)}dx=-\int \frac{1}{u}du=-ln(u)+c=-ln(2+cos(x))+c\)

Example Question #1021 : Integrals

Evaluate

\(\displaystyle \int cos(x)e^{sin(x)}dx\)

Possible Answers:

\(\displaystyle e^{cosx}+c\)

\(\displaystyle e^{sinx} +cos(x) +c\)

\(\displaystyle e^{sinx}+c\)

\(\displaystyle tan(x)+e^x +c\)

\(\displaystyle e^{cosx}-sin(x)+c\)

Correct answer:

\(\displaystyle e^{sinx}+c\)

Explanation:

Here we use substitution to solve for the integrand.  Let u=sin(x) therefore du= cos(x)dx.  Plug your values back in:

\(\displaystyle \int cos(x)e^{sinx}dx = \int e^udu = e^u +c =e^{sinx}+c\)

Example Question #92 : Solving Integrals By Substitution

\(\displaystyle \int_{1}^{2}\frac{x}{x^2+1}dx\)

Possible Answers:

\(\displaystyle 0.3266\)

\(\displaystyle 0.2466\)

\(\displaystyle 0.3496\)

\(\displaystyle 0.4581\)

\(\displaystyle 1.3466\)

Correct answer:

\(\displaystyle 0.4581\)

Explanation:

To integrate this expression, you have to use u substitution. First, assign your u expression:

\(\displaystyle u=x^2+1\)

\(\displaystyle du=2xdx\)

\(\displaystyle \frac{1}{2}du=xdx\)

Now, plug everything back in so you can integrate:

\(\displaystyle \frac{1}{2}\int_{1}^{2}\frac{1}{u}du\)

Now integrate:

\(\displaystyle \frac{1}{2}\ln\left | u \right |\)

From here substitute the original variable back into the expression.

\(\displaystyle \frac{1}{2}\ln|x^2+1|\)

Evaluate at 2 and then 1.

Subtract the results:

\(\displaystyle \frac{1}{2}\left(\ln|2^2+1|-\ln|1+1| \right )\)

\(\displaystyle \frac{1}{2}\left(\ln|5|-\ln|2|\right)\)

\(\displaystyle \frac{\ln5-\ln2}{2}=0.4581\)

 

Learning Tools by Varsity Tutors