Calculus 2 : Limits

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Limits

Evaluate:

\displaystyle \lim_{x\rightarrow 1} \frac{8^{x}- 8}{2^{x}- 2}

Possible Answers:

\displaystyle 4

The limit does not exist.

None of the other answers is correct.

\displaystyle \infty

\displaystyle \ln 4

Correct answer:

None of the other answers is correct.

Explanation:

Evaluated at \displaystyle x = 1, the numerator and the denominator are both equal to 0, as shown below:

\displaystyle 8^{x}- 8 = 8^{1}- 8 = 8 - 8 = 0

\displaystyle 2^{x}- 2 = 2^{1}- 2 = 2 - 2 = 0

So a straightforward substitution will not work. L'Hospital's rule will work here, but an easier way is to note that

\displaystyle 8 = 2 ^{3} and \displaystyle 8^{x} = \left ( 2 ^{3} \right )^{x} = 2 ^{3x} = \left ( 2 ^{x} \right )^{3}.

So the expression can be rewritten - and solved - as follows:

\displaystyle \lim_{x\rightarrow 1} \frac{8^{x}- 8}{2^{x}- 2}

\displaystyle = \lim_{x\rightarrow 1} \frac{\left (2^{x} \right )^{3}- 2^{3}}{2^{x}- 2}

\displaystyle = \lim_{x\rightarrow 1} \frac{\left (2^{x}- 2 \right) \left [ \left ( 2^{x} \right ) ^{2} +2 \cdot 2^{x} + 2 ^{2} \right ] }{2^{x}- 2}

\displaystyle = \lim_{x\rightarrow 1} \left [ \left ( 2^{x} \right ) ^{2} +2 \cdot 2^{x} + 2 ^{2} \right ]

\displaystyle = \left [ \left ( 2^{1} \right ) ^{2} +2 \cdot 2^{1} + 2 ^{2} \right ] = 2^{2} + 2 \cdot 2 + 2^{2} = 4 + 4 + 4 = 12

Example Question #1 : Limit Concepts

Evaluate the limit:

\displaystyle \lim_{y \rightarrow 0} \frac{\tan2y}{\sin 5y}

Possible Answers:

\displaystyle 0

Does Not Exist

\displaystyle \frac{5}{2}

\displaystyle \sin \frac{2}{5}

\displaystyle \frac{2}{5}

Correct answer:

\displaystyle \frac{2}{5}

Explanation:

Directly evaluating the limit will produce an indeterminant answer of \displaystyle \frac{0}{0}.

Rewriting the limit in terms of sine and cosine, \displaystyle \lim_{y \rightarrow 0} \frac{\sin 2y}{\cos 2y} \cdot \frac{1}{\sin 5y}, we can try to manipulate the function in order to utilize the property \displaystyle \lim_{x \rightarrow 0} \frac{\sin x}{x}=1.

Multiplying the function by the arguments of the sine functions, \displaystyle \lim_{y \rightarrow 0} \frac{\sin 2y}{2y} \cdot \frac{1}{\cos 2y} \cdot \frac{5y}{\sin 5y} \cdot \frac{2y}{5y}, we can see that the limit will be \displaystyle (1)(1)(1)\left(\frac{2}{5}\right) = \left(\frac{2}{5} \right ).

 

 

 

Example Question #2 : Limits

Evaluate \displaystyle \lim_{x\rightarrow \frac{\pi}{2}^{-} } \cos x \tan x.

Possible Answers:

\displaystyle 0

\displaystyle \infty

\displaystyle 1

The limit does not exist.

\displaystyle - \infty

Correct answer:

\displaystyle 1

Explanation:

\displaystyle \lim_{x\rightarrow \frac{\pi}{2}^{-} } \cos x = \cos \frac{\pi}{2} = 0

and 

\displaystyle \lim_{x\rightarrow \frac{\pi}{2}^{-} } \tan x = \infty,

so we cannot solve this by substituting.

However, we can rewrite the expression:

\displaystyle \lim_{x\rightarrow \frac{\pi}{2}^{-} } \cos x \cdot \frac{\sin x}{\cos x}

\displaystyle = \lim_{x\rightarrow \frac{\pi}{2}^{-} } \sin x = \sin \frac{\pi}{2} = 1

Example Question #2 : Calculus Ii

Find the limit of \displaystyle \frac{sin^5(x)}{x^5} as \displaystyle x approaches infinity.

Possible Answers:

\displaystyle 1

\displaystyle \frac{1}{2}

\displaystyle 0

Inconclusive

\displaystyle \infty

Correct answer:

\displaystyle 0

Explanation:

The expression \displaystyle \frac{sin^5(x)}{x^5} can be rewritten as \displaystyle \frac{1}{x^5}sin^5(x).

Recall the Squeeze theorem can be used to solve for the limit.  The sine function has a range from \displaystyle [0,1], which means that the range must be inside this boundary.

\displaystyle 0\leq sin^5(x) \leq 1

Multiply the \displaystyle \frac{1}{x^5} term through.

\displaystyle 0\left(\frac{1}{x^5}\right)\leq \left(\frac{1}{x^5}\right)sin^5(x) \leq 1\left(\frac{1}{x^5}\right)

Take the limit as \displaystyle x approaches infinity for all terms.

\displaystyle \lim_{x \to \infty}0\leq \lim_{x \to \infty}\frac{sin^5(x)}{x^5} \leq \lim_{x \to \infty}\frac{1}{x^5}

\displaystyle 0\leq \lim_{x \to \infty}\frac{sin^5(x)}{x^5} \leq 0

Since the left and right ends of this interval are zero, it can be concluded that \displaystyle \lim_{x \to \infty}\frac{sin^5(x)}{x^5} must also approach to zero.

The correct answer is 0.

Example Question #1 : Limit Concepts

Determine the limit.   \displaystyle \lim_{x \to 0}-\frac{1}{x^2}

Possible Answers:

\displaystyle -\infty

\displaystyle -1

\displaystyle 0

\displaystyle \infty

\displaystyle 1

Correct answer:

\displaystyle -\infty

Explanation:

To determine, \displaystyle \lim_{x \to 0}-\frac{1}{x^2}, graph the function \displaystyle y=-\frac{1}{x^2} and notice the direction from the left and right of the curve as it approaches \displaystyle x=0.

Both the left and right direction goes to negative infinity.

The answer is:  \displaystyle -\infty

Example Question #2 : Limit Concepts

Which of the following is true?

Possible Answers:

If neither \displaystyle \small \lim _{x\to a} f(x) nor \displaystyle \small \small \lim _{x\to a} g(x) exist, then \displaystyle \small \lim _{x\to a} f(x)+g(x) also doesn't exist.

If \displaystyle \small \small \lim _{x\to a} f(x)+g(x) exists, then \displaystyle \small \lim _{x\to a} f(x) and \displaystyle \small \lim _{x\to a} g(x) both exist.

If \displaystyle \small \lim _{x\to a} f(x) and \displaystyle \small \lim _{x\to a} g(x), then \displaystyle \small \lim _{x\to a} f(x)+g(x) exists.

\displaystyle \small \lim _{x\to a} f(x) and \displaystyle \small \lim _{x\to a} g(x) exist if and only if \displaystyle \small \small \lim _{x\to a} f(x)+g(x) exists.

Correct answer:

If \displaystyle \small \lim _{x\to a} f(x) and \displaystyle \small \lim _{x\to a} g(x), then \displaystyle \small \lim _{x\to a} f(x)+g(x) exists.

Explanation:

If \displaystyle \small \lim _{x\to a} f(x) and \displaystyle \small \lim _{x\to a} g(x), then \displaystyle \small \lim _{x\to a} f(x)+g(x) exists.

This can be proven rigorously using the \displaystyle \small \epsilon-\delta definition of a limit, but it is most likely beyond the scope of your class. 

Example Question #1 : Limits

Determine the limit:  \displaystyle \lim_{x \to \infty}\frac{3x^n}{9n!}

Possible Answers:

\displaystyle \frac{1}{3}

\displaystyle 1

\displaystyle \infty

\displaystyle 3

\displaystyle 0

Correct answer:

\displaystyle 0

Explanation:

Isolate the constant in the limit.

\displaystyle \lim_{x \to \infty}\frac{3x^n}{9n!} = \frac{1}{3}\lim_{x \to \infty}\frac{x^n}{n!}

The limit property \displaystyle \lim_{x \to \infty}\frac{x^n}{n!}=0.

Therefore:

\displaystyle \frac{1}{3}\lim_{x \to \infty}\frac{x^n}{n!} = \frac{1}{3}(0)=0

Example Question #2 : Limits

Evaluate the limit, if possible:  \displaystyle \lim_{x\to \infty}tan^{-1}(x^2)

Possible Answers:

\displaystyle 1

\displaystyle \infty

\displaystyle \frac{\pi}{4}

\displaystyle \frac{\pi}{2}

\displaystyle 0

Correct answer:

\displaystyle \frac{\pi}{2}

Explanation:

To evaluate \displaystyle \lim_{x\to \infty}tan^{-1}(x^2), notice that the inside term \displaystyle x^2 will approach infinity after substitution.  The inverse tangent of a very large number approaches to \displaystyle \frac{\pi}{2} \textup{ radians}.

The answer is \displaystyle \frac{\pi}{2}.

Example Question #1 : Limit Concepts

Evaluate the following limit:

\displaystyle \lim_{x\rightarrow \infty }\frac{x^2+1}{3x^2}

Possible Answers:

\displaystyle \frac{1}{3}

\displaystyle -\infty

\displaystyle \infty

\displaystyle -\frac{1}{3}

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

The first step is to factor out the highest degree term from the polynomial on top and bottom (essentially pulling out 1):

\displaystyle \lim_{x\rightarrow \infty }\frac{x^2}{x^2}\left(\frac{1+\frac{1}{x^2}}{3}\right)

which becomes

\displaystyle \lim_{x\rightarrow \infty }\left(\frac{1+\frac{1}{x^2}}{3}\right)

Evaluating the limit, we approach \displaystyle \frac{1}{3}.

 

Example Question #1 : Limit Concepts

Evaluate the following limit:

\displaystyle \lim_{x\rightarrow \infty }\frac{x}{2x^2+3x+1}

Possible Answers:

\displaystyle \infty

\displaystyle 0

\displaystyle \frac{1}{3}

\displaystyle -\infty

Correct answer:

\displaystyle 0

Explanation:

To evaluate the limit, first pull out the largest power term from top and bottom (so we are removing 1, in essence):

\displaystyle \lim_{x\rightarrow \infty }\frac{x^2(\frac{1}{x})}{x^2(2+\frac{3}{x}+\frac{1}{x^2})}

which becomes

\displaystyle \lim_{x\rightarrow \infty }\frac{(\frac{1}{x})}{(2+\frac{3}{x}+\frac{1}{x^2})}

Plugging in infinity, we find that the numerator approaches zero, which makes the entire limit approach 0.

 

Learning Tools by Varsity Tutors