Calculus 2 : Parametric

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #591 : Calculus Ii

Find dy/dx at the point corresponding to the given value of the parameter without eliminating the parameter:

\displaystyle x=\sqrt{t+5},y=5t-2, t=4

Possible Answers:

\displaystyle \frac{1}{30}

\displaystyle \frac{6}{5}

\displaystyle \frac{5}{6}

\displaystyle \frac{1}{6}

\displaystyle 30

Correct answer:

\displaystyle 30

Explanation:

The formula for dy/dx for parametric equations is given as:

\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

From the problem statement:

\displaystyle \frac{dy}{dt}=5,\frac{dx}{dt}=\frac{1}{2\sqrt{t+5}}

If we plug in t=4, into the above equations:

\displaystyle \frac{dy}{dx}=\frac{5}{\frac{1}{2\sqrt{9}}}=\frac{5}{\frac{1}{2(3)}}=\frac{5}{\frac{1}{6}}=30

This is one of the answer choices.

Example Question #81 : Parametric, Polar, And Vector

Find dy/dx at the point corresponding to the given value of the parameter without eliminating the parameter:

\displaystyle x=5\sec(t),y=3\tan(t), t=\frac{\pi}{6}

Possible Answers:

\displaystyle \frac{6}{5}

\displaystyle \frac{10}{3}

\displaystyle 10\sqrt3

\displaystyle \frac{5}{6}

\displaystyle \frac{3}{10}

Correct answer:

\displaystyle \frac{6}{5}

Explanation:

The formula for dy/dx for parametric equations is given as:

\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

From the problem statement:

\displaystyle \frac{dy}{dt}=3\sec^2(t),\frac{dx}{dt}=5\sec(t)\tan(t)

If we plug these into the above equation we end up with:

\displaystyle \frac{dy}{dx}=\frac{3\sec^2(t)}{5\sec(t)\tan(t)}=\frac{3\sec(t)}{5\tan(t)}=\frac{3\frac{1}{cos(t)}}{5\frac{sin(t)}{cos(t)}}

\displaystyle \frac{dy}{dx}=\frac{3}{5}\frac{1}{\cos(t)}\frac{\cos(t)}{\sin(t)}=\frac{3}{5}\frac{1}{\sin(t)}

If we plug in our given value for t, we end up with:

\displaystyle \frac{3}{5}\frac{1}{\sin(\frac{\pi}{6})}=\frac{3}{5}\frac{1}{\frac{1}{2}}=\frac{3}{5}*2=\frac{6}{5}

This is one of the answer choices.

Example Question #81 : Parametric, Polar, And Vector

Convert the following parametric equation into rectangular form:

\displaystyle x=t+5, y=\sec^2(t)

Possible Answers:

\displaystyle y=\sec^2(x)

\displaystyle y=\sec^2(x-5)

\displaystyle y=\sec^2(x-5)+C

\displaystyle y=\sec(x-5)

Correct answer:

\displaystyle y=\sec^2(x-5)

Explanation:

To convert from parametric to rectangular form, we must eliminate the parameter by finding t in terms of x or y:

\displaystyle t=x-5

Now, plug t into the equation for y:

\displaystyle y=\sec^2(x-5)

Example Question #591 : Calculus Ii

Given \displaystyle x=5t+12 and \displaystyle y=9-3t, what is \displaystyle y in terms of \displaystyle x?

Possible Answers:

None of the above

\displaystyle y=9+\frac{3}{5}(x-12)

\displaystyle y=9-\frac{3}{5}(x-12)

\displaystyle y=9+\frac{3}{5}(x+12)

\displaystyle y=9-\frac{3}{5}(x+12)

Correct answer:

\displaystyle y=9-\frac{3}{5}(x-12)

Explanation:

Given \displaystyle x=5t+12 and \displaystyle y=9-3t,  let's solve both equations for :

\displaystyle x=5t+12\rightarrow t=\frac{x-12}{5}

\displaystyle y=9-3t\rightarrow t=\frac{9-y}{3}

Since both equations equal , let's set them equal to each other and solve for :

\displaystyle \frac{9-y}{3}=\frac{x-12}{5}

\displaystyle 9-y=3(\frac{x-12}{5})

\displaystyle y=9-\frac{3}{5}(x-12)

Example Question #593 : Calculus Ii

What is a way of parameterizing the circle \displaystyle x^2+y^2=16? (Assume \displaystyle 0\leq t\leq2\pi) There are many ways of doing this.

Possible Answers:

\displaystyle x(t)=4\cos t\displaystyle y(t)=4\sin t

\displaystyle x(t)=4\cos t\displaystyle y(t)=16\sin t

\displaystyle x(t)=\cos t\displaystyle y(t)=\sin t

\displaystyle x(t)=16\cos t\displaystyle y(t)=16\sin t

Correct answer:

\displaystyle x(t)=4\cos t\displaystyle y(t)=4\sin t

Explanation:

To see why the parametric equations

\displaystyle x(t)=4\cos t\displaystyle y(t)=4\sin t

describe the circle

\displaystyle x^2+y^2=16

we do the following manipulation:

\displaystyle \left(\frac{x(t)}{4} \right )^2+\left( \frac{y(t)}{4}\right )^2=\cos^2 t+\sin^2 t=1

which means

\displaystyle \left(\frac{x(t)}{4} \right )^2+\left( \frac{y(t)}{4}\right )^2=1

or 

\displaystyle x(t)^2+y(t)^2=16

which describes the circle of radius \displaystyle 4.

Example Question #594 : Calculus Ii

What is not a way of parameterizing the ellipse 

\displaystyle \frac{x^2}{4}+\frac{y^2}{9}=1

(Assume \displaystyle 0\leq t\leq 2\pi)

Possible Answers:

\displaystyle x(t)=3\sin t, y(t)=2\cos t

\displaystyle x(t)=-2\cos t, y(t)=3\sin t

\displaystyle x(t)=2\sin t, y(t)=3\cos t

\displaystyle x(t)=2\cos t, y(t)=3\sin t

Correct answer:

\displaystyle x(t)=3\sin t, y(t)=2\cos t

Explanation:

The reason that the parametric equations

\displaystyle x(t)=3\sin t, y(t)=2\cos t

don't describe the ellipse

\displaystyle \frac{x^2}{4}+\frac{y^2}{9}=1

is because if do some algebraic manipulation, we get

\displaystyle \frac{x(t)^2}{9}+\frac{y(t)^2}{4}=\sin^2 t+\cos^2 t=1

which describes a different ellipse than

\displaystyle \frac{x^2}{4}+\frac{y^2}{9}=1.

Example Question #82 : Parametric

Which of the following set of parametric equations parametrizes a section of parabola

\displaystyle y=1-x^2? (Assume \displaystyle 0\leq t\leq 2\pi)

Possible Answers:

\displaystyle x(t)=\cos^2 t, y(t)=\sin t

\displaystyle x(t)=\sin^2 t, y(t)=\cos t

\displaystyle x(t)=\cos^2 t, y(t)=\sin^2 t

\displaystyle x(t)=\cos t, y(t)=\sin^2 t

Correct answer:

\displaystyle x(t)=\cos t, y(t)=\sin^2 t

Explanation:

We can see that the parametric equations

\displaystyle x(t)=\cos t, y(t)=\sin^2 t

describe a section of the parabola

\displaystyle y=1-x^2

because if do some manipulations of the parametric equations, we get 

\displaystyle x(t)^2+y(t)=\cos^2 t+\sin^2 t=1

\displaystyle \Rightarrow x(t)^2+y(t)=1

So then we get

\displaystyle y(t)=1-x(t)^2

which describes part of the parabola 

\displaystyle y=1-x^2.

Example Question #601 : Calculus Ii

Which of the following parametric equations parametrizes an ellipse? (Assume that \displaystyle 0\leq t\leq 2\pi)

Possible Answers:

\displaystyle x(t)=\sqrt{2}\cos t, y(t)=\sqrt{2}\cos t

\displaystyle x(t)=\cos^2 t, y(t)=\sin^2 t

\displaystyle x(t)=\sqrt{2}\cos t, y(t)=\sqrt{3}\cos t

\displaystyle x(t)=2\cos t, y(t)=3\sin t

Correct answer:

\displaystyle x(t)=2\cos t, y(t)=3\sin t

Explanation:

The parametric equations

\displaystyle x(t)=2\cos t, y(t)=3\sin t

describe an ellipse because we have

\displaystyle \frac{x(t)^2}{4}+\frac{y(t)^2}{9}=\cos^2 t+\sin^2 t=1

which means 

\displaystyle \frac{x(t)^2}{4}+\frac{y(t)^2}{9}=1

which is the equation for an ellipse.

Example Question #81 : Parametric, Polar, And Vector

Given \displaystyle x=t^{2}-5 and \displaystyle y=3t+8, what is \displaystyle y in terms of \displaystyle x (rectangular form)?

Possible Answers:

\displaystyle y=3\sqrt{x-5}-8

\displaystyle y=3(\pm\sqrt{x+5})+8

\displaystyle y=3\sqrt{x+5}-8

\displaystyle y=3\sqrt{x-5}+8

None of the above

Correct answer:

\displaystyle y=3(\pm\sqrt{x+5})+8

Explanation:

Given \displaystyle x=t^{2}-5 and \displaystyle y=3t+8, et's solve both equations for :

\displaystyle x=t^{2}-5 \rightarrow t=\pm\sqrt{x+5}

\displaystyle y=3t+8\rightarrow t=\frac{y-8}{3}

Since both equations equal , let's set them equal to each other and solve for :

\displaystyle \frac{y-8}{3}=\pm\sqrt{x+5}

\displaystyle y-8=3(\pm\sqrt{x+5})

\displaystyle y=3(\pm\sqrt{x+5})+8

Example Question #603 : Calculus Ii

Given \displaystyle x=4+10t and \displaystyle y=2-t, what is \displaystyle y in terms of \displaystyle x (rectangular form)?

Possible Answers:

None of the above

\displaystyle y=\frac{x+4}{10}-2

\displaystyle y=2-\frac{x-4}{10}

\displaystyle y=\frac{x-4}{10}-2

\displaystyle y=\frac{x+4}{10}+2

Correct answer:

\displaystyle y=2-\frac{x-4}{10}

Explanation:

Given \displaystyle x=4+10t and \displaystyle y=2-t, let's solve both equations for :

\displaystyle x=4+10t\rightarrow t=\frac{x-4}{10}

\displaystyle y=2-t\rightarrow t=2-y

Since both equations equal , let's set them equal to each other and solve for :

\displaystyle 2-y=\frac{x-4}{10}

\displaystyle y=2-\frac{x-4}{10}

Learning Tools by Varsity Tutors