Calculus 2 : Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Vector Form

What is the vector form of \displaystyle -6i+j+k?

Possible Answers:

\displaystyle \left \langle -6,1,1\right \rangle

\displaystyle \left \langle -6,1,-1\right \rangle

\displaystyle \left \langle 6,1,-1\right \rangle

\displaystyle \left \langle 6,-1,1\right \rangle

\displaystyle \left \langle 6,1,1\right \rangle

Correct answer:

\displaystyle \left \langle -6,1,1\right \rangle

Explanation:

In order to derive the vector form, we must map the , , -coordinates to their corresponding , , and coefficients.

That is, given, the vector form is  .

So for \displaystyle -6i+j+k, we can derive the vector form \displaystyle \left \langle -6,1,1\right \rangle.

Example Question #91 : Vector Form

What is the vector form of \displaystyle 3i-k?

Possible Answers:

\displaystyle \left \langle 3,0,-1\right \rangle

\displaystyle \left \langle 3,-1,0\right \rangle

\displaystyle \left \langle -3,0,-1\right \rangle

\displaystyle \left \langle 3,0,1\right \rangle

\displaystyle \left \langle -3,0,1\right \rangle

Correct answer:

\displaystyle \left \langle 3,0,-1\right \rangle

Explanation:

In order to derive the vector form, we must map the -coordinates to their corresponding , and coefficients.

That is, given, the vector form is  .

So for \displaystyle 3i-k, we can derive the vector form \displaystyle \left \langle 3,0,-1\right \rangle.

Example Question #1 : Vector Form

Given points \displaystyle (4,2,-2) and \displaystyle (7,1,0), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle 3,1,-2\right \rangle

\displaystyle \left \langle -3,1,-2\right \rangle

\displaystyle \left \langle 3,1,2\right \rangle

\displaystyle \left \langle 3,-1,2\right \rangle

\displaystyle \left \langle -3,1,2\right \rangle

Correct answer:

\displaystyle \left \langle 3,-1,2\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points.

That is, for any point and , the distance is the vector .

Subbing in our original points \displaystyle (4,2,-2) and \displaystyle (7,1,0),  we get:

\displaystyle v=\left \langle 7-4,1-2,0-(-2)\right \rangle

\displaystyle v=\left \langle 3,-1,2\right \rangle

Example Question #91 : Vector Form

Given points \displaystyle (2,7,-6) and \displaystyle (1,2,3), what is the vector form of the distance between the points?

 

Possible Answers:

\displaystyle \left \langle 1,-5,-9\right \rangle

\displaystyle \left \langle -1,5,-9\right \rangle

\displaystyle \left \langle -1,-5,-9\right \rangle

\displaystyle \left \langle -1,-5,9\right \rangle

\displaystyle \left \langle 1,5,9\right \rangle

Correct answer:

\displaystyle \left \langle -1,-5,9\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points.

That is, for any point and , the distance is the vector .

Subbing in our original points \displaystyle (2,7,-6) and \displaystyle (1,2,3),  we get:

 \displaystyle v=\left \langle 1-2,2-7,3-(-6)\right \rangle

\displaystyle v=\left \langle -1,-5,9\right \rangle

Example Question #441 : Parametric, Polar, And Vector

What is the vector form of \displaystyle -i+2j+10k?

Possible Answers:

\displaystyle \left \langle 1,2,-10\right \rangle

\displaystyle \left \langle 1,2,10\right \rangle

\displaystyle \left \langle -1,2,10\right \rangle

\displaystyle \left \langle 1,-2,-10\right \rangle

\displaystyle \left \langle 1,-2,10\right \rangle

Correct answer:

\displaystyle \left \langle -1,2,10\right \rangle

Explanation:

In order to derive the vector form, we must map the , , -coordinates to their corresponding , , and coefficients.

That is, given, the vector form is .

So for \displaystyle -i+2j+10k, we can derive the vector form \displaystyle \left \langle -1,2,10\right \rangle.

Example Question #92 : Vector Form

What is the vector form of \displaystyle i+k?

Possible Answers:

\displaystyle \left \langle 1,1,0\right \rangle

\displaystyle \left \langle 0,1,1\right \rangle

\displaystyle \left \langle -1,0,1\right \rangle

\displaystyle \left \langle 1,0,-1\right \rangle

\displaystyle \left \langle 1,0,1\right \rangle

Correct answer:

\displaystyle \left \langle 1,0,1\right \rangle

Explanation:

In order to derive the vector form, we must map the -coordinates to their corresponding , and  coefficients.

That is, given , the vector form is .

So for \displaystyle i+k, we can derive the vector form \displaystyle \left \langle 1,0,1\right \rangle.

Example Question #391 : Gre Subject Test: Math

What is the vector form of \displaystyle j+8k?

Possible Answers:

\displaystyle \left \langle 1,0,8\right \rangle

None of the above

\displaystyle \left \langle 1,8,0\right \rangle

\displaystyle \left \langle 0,8,1\right \rangle

\displaystyle \left \langle 0,1,8\right \rangle

Correct answer:

\displaystyle \left \langle 0,1,8\right \rangle

Explanation:

Given \displaystyle j+8k, we need to map the \displaystyle i\displaystyle j, and \displaystyle k coefficients back to their corresponding \displaystyle x\displaystyle y, and \displaystyle z-coordinates.

Thus the vector form of \displaystyle j+8k is \displaystyle \left \langle 0,1,8\right \rangle.

Example Question #91 : Vector

Express \displaystyle 4i-9j in vector form.

Possible Answers:

\displaystyle \left \langle 4,9,0\right \rangle

\displaystyle \left \langle 0,4,-9\right \rangle

\displaystyle \left \langle 4,-9,0\right \rangle

\displaystyle \left \langle 4,0,-9\right \rangle

\displaystyle \left \langle 4,-9\right \rangle

Correct answer:

\displaystyle \left \langle 4,-9,0\right \rangle

Explanation:

In order to express \displaystyle 4i-9j in vector form, we must use the coefficients of \displaystyle i, j,and \displaystyle k to represent the \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates of the vector.

Therefore, its vector form is 

\displaystyle \left \langle 4,-9,0\right \rangle.

Example Question #1 : Graphing Vectors

What is the arclength, from \displaystyle x = 0 to \displaystyle x=\frac{\pi}{3}, of the curve:      

\displaystyle y = ln \left | cos x\right |

Hint:

\displaystyle \int (sec (x)) dx= ln \left | sec (x) +tan(x)\right | + C

Possible Answers:

\displaystyle ln (\sqrt{3} + {2})

\displaystyle \sqrt{3} - \sqrt2

\displaystyle ln \left(\sqrt{2} + \frac{1}{2}\right)

\displaystyle \sqrt{2} + 1

\displaystyle ln (\sqrt{2} + \sqrt3)

Correct answer:

\displaystyle ln (\sqrt{3} + {2})

Explanation:

Arclength is given by the formula:

\displaystyle Arclength = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}}\right)^2 dx

We should find dy/dx first, which we find to be:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(ln(cos(x)) = \frac{1}{cos(x)}\cdot (-sin(x)) = -tan(x)

Now let's proceed with the integral:

\displaystyle \int_{0}^{\frac{\pi}{3}} \sqrt{1 + (-tan x)^2}dx = \int_{0}^{\frac{\pi}{3}} \sqrt{(sec^2x)}dx = \int_{0}^{\frac{\pi}{3}} sec(x)dx

(here we apply the integration described in the hint) 

\displaystyle = \left[ln \left | tan(x) + sec(x)\right |\bigg]_{0}^{\frac{\pi}{3}} = ln (\sqrt{3} + {2})

 which is obtained by evaluating at both boundaries.

 

 

 

Example Question #1 : Graphing Vectors

Find the area of the polar equation:

 \displaystyle r = \sqrt{cos(\theta )} 

Possible Answers:

\displaystyle 1

\displaystyle 2

\displaystyle \pi

\displaystyle 0

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle 1

Explanation:

When you plot the graph of  \displaystyle r = \sqrt{cos(\theta )} , the bounds are between \displaystyle \theta = -\frac{\pi }{2}  and \displaystyle \theta = \frac{\pi }{2}.

Use the area formula  for polar equations:

\displaystyle Area = \int_{\theta_{1} }^{\theta_{2}} \frac{1}{2}r^2 d\theta 

And so we find the area to be:

\displaystyle \frac{1}{2}\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}} (\sqrt{cos( \theta)})^2d\theta = \frac{1}{2}\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}} cos (\theta)d\theta = \frac{1}{2}[sin \theta ]_{-\frac{\pi }{2}}^{\frac{\pi }{2}}

\displaystyle = \frac{1}{2}(1+1) = 1

 

Learning Tools by Varsity Tutors