Calculus 2 : Introduction to Series in Calculus

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Series In Calculus

What do we mean when we say an infinite series \displaystyle \sum_{n=0}^{\infty} a_nconverges?

Possible Answers:

The sequence partial sums of the sequence \displaystyle a_n, also denoted \displaystyle a_n converges as \displaystyle n \to \infty.

None of the other choices

The sequence  \displaystyle a_n converges as \displaystyle n \to \infty.

The sequence partial sums of the sequence \displaystyle s_n = a_n  converges as \displaystyle n \to \infty.

The sequence partial sums of the sequence \displaystyle a_n, denoted \displaystyle s_n = a_0 +a_1 +a_2 + ... + a_n converges as \displaystyle n \to \infty.

Correct answer:

The sequence partial sums of the sequence \displaystyle a_n, denoted \displaystyle s_n = a_0 +a_1 +a_2 + ... + a_n converges as \displaystyle n \to \infty.

Explanation:

This is the definition of a convergent infinite series.

Example Question #2791 : Calculus Ii

What is the sum of the following geometric series:

\displaystyle 2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}+...?

 

Possible Answers:

\displaystyle 2

\displaystyle 4

\displaystyle 0

Cannot be determined.  

\displaystyle 6

Correct answer:

\displaystyle 4

Explanation:

Since this is a geometric series with a rate between \displaystyle 0 and \displaystyle 1, we can use the following equation to find the sum:

\displaystyle S_{\infty}=\frac{a_{1}}{1-r}, where \displaystyle a_{1} is the starting number in the sequence, and \displaystyle r is the common divisor between successive terms in the sequence.  In this sequence, to go from one number to the next, we multiply by \displaystyle \frac{1}{2}.  Now, we plug everything into the equation:

\displaystyle S_{\infty}=\frac{a_{1}}{1-r}=\frac{2}{1-0.5}=\frac{2}{0.5}=4.

 

Example Question #11 : Series In Calculus

Find the infinite sum of the following geometric series:

\displaystyle -240, 60, 15, +...

Possible Answers:

\displaystyle -100

\displaystyle 192

Cannot be determined

\displaystyle -192

\displaystyle 0

Correct answer:

\displaystyle -192

Explanation:

Since this is a geometric series with a rate between \displaystyle 0 and \displaystyle -1, we can use the following equation to find the sum:

\displaystyle S_{\infty}=\frac{a_{1}}{1-r}, where \displaystyle a_{1} is the starting number in the sequence, and \displaystyle r is the common divisor between successive terms in the sequence.  In this sequence, to go from one number to the next, we multiply by \displaystyle \frac{-1}{4}.  Now, we plug everything into the equation:

\displaystyle S_{\infty}=\frac{a_{1}}{1-r}=\frac{-240}{1--0.25}=\frac{-240}{1.25}=-192.

Example Question #11 : Series In Calculus

Find the infinite sum of the following series:

\displaystyle 80, 40, 20, 10, 5+...

Possible Answers:

\displaystyle 120

\displaystyle 160

\displaystyle 125

\displaystyle 80

\displaystyle 100

Correct answer:

\displaystyle 160

Explanation:

For the sum of an infinite series, we have the following formula:

\displaystyle S_{\infty}=\frac{a_{1}}{1-r}, where \displaystyle a_{1} is the first term in the series and \displaystyle r is the rate at which our series is changing between consecutive numbers in the series.  Plugging all of the relevant information for this series, we get:

\displaystyle S_{\infty}=\frac{80}{1-0.5}=160.

Example Question #13 : Series And Functions

Find the infinite sum of the following series:

\displaystyle -500,100, -20, 4+...

Possible Answers:

\displaystyle \frac{-1250}{3}

\displaystyle 500

\displaystyle -1000

\displaystyle 0

\displaystyle -500

Correct answer:

\displaystyle \frac{-1250}{3}

Explanation:

For the sum of an infinite series, we have the following formula:

\displaystyle S_{\infty}=\frac{a_{1}}{1-r}, where \displaystyle a_{1} is the first term in the series and \displaystyle r is the rate at which our series is changing between consecutive numbers in the series.  Plugging all of the relevant information for this series, we get:

\displaystyle S_{\infty}=\frac{-500}{1--0.2}=\frac{-1250}{3}=-416.666.

Example Question #16 : Series And Functions

A) Find a power series representation of the function, 

 \displaystyle f(x)=\frac{4x}{x+2} 

 

B) Determine the power series radius of convergence.  

Possible Answers:

A) Power Series for \displaystyle f(x)

 

\displaystyle f(x)=4x\sum_{n=1}^{\infty}\left(\frac{x^{n+1}}{2^{n+1}} \right ) 

 

B) Radius of Convergence 

 

A) Power Series for \displaystyle f(x),

 

\displaystyle f(x)=\sum_{n=1}^{\infty}(-1)^{2n+1}\left(\frac{x^{n+1}}{2^{2n+1}} \right )

 

B) Radius of Convergence 

 1

 

A) Power Series for \displaystyle f(x),

 

 \displaystyle f(x)=\sum_{n=1}^{\infty}(-1)^n\left(\frac{x}{2} \right )^n

 

 

B) Radius of Convergence 

 1

 

A) Power Series for \displaystyle f(x),

 

\displaystyle f(x)=\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{x^{n+1}}{2^{n}} \right )

 

B) Radius of Convergence 

 2 

 

A) Power Series for \displaystyle f(x)

 

\displaystyle f(x)=\sum_{n=1}^{\infty}(-1)^n\left(\frac{x^{n+1}}{2^{n-1}} \right )

 

B) Radius of Convergence 

 

Correct answer:

A) Power Series for \displaystyle f(x)

 

\displaystyle f(x)=\sum_{n=1}^{\infty}(-1)^n\left(\frac{x^{n+1}}{2^{n-1}} \right )

 

B) Radius of Convergence 

 

Explanation:

\displaystyle f(x)=\frac{4x}{x+2}

 

This function can be easily written as a power series using the formula for a convergent geometric series. 

____________________________________________________________

\displaystyle \sum_{n=1}^{\infty}ar^n =\frac{a}{1-r} 

For any \displaystyle \left | r\right |< 1

____________________________________________________________

 

First let's make some modifications to the function so we can compare it to the form of a convergent geometric series: 

\displaystyle f(x)=\frac{4x}{x+2}=x\left(\frac{4}{2-(-x)} \right )=x\left(\frac{2}{1-\left(-\frac{x}{2} \right )} \right )

 

Notice if we take \displaystyle r =- \frac{x}{2} and \displaystyle a =2 we can write \displaystyle f(x) in the form, 

 

 \displaystyle f(x)=x\sum_{x=1}^{\infty}2\left(-\frac{x}{2} \right )^n

We can find the radius of convergence by applying the condition  \displaystyle \left | r\right |< 1.

 _____________________________________________________________

Finding Radius of Convergence. 

 \displaystyle \left | \: -\frac{x}{2}\right |< 1

 Case 1

\displaystyle - \frac{x}{2}< 1\: \: \: \: \: \: \Rightarrow \: \: \: \: \: \: \frac{x}{2}>-1\: \: \: \: \: \: \:\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, x>-2

 Case 2

\displaystyle -\frac{x}{2}>-1\: \: \, \: \: \Rightarrow\, \, \, \, \, \, \, \, \frac{x}{2}< 1\, \, \, \, \, \, \Rightarrow\, \, \, \, \, \, \, \, \, x< 2      

 

Combing both cases gives the interval of convergence, 

\displaystyle -2< x< 2

 

Therefore the radius of convergence is \displaystyle 2

____________________________________________________________ 

 

We can continue simplifying our most recent expression of \displaystyle f(x)

 \displaystyle f(x)=\sum_{x=1}^{\infty}2x(-1)^n\left (\frac{x}{2} \right )^n

 

 \displaystyle f(x)=\sum_{n=1}^{\infty}(-1)^n\left(\frac{x^{n+1}}{2^{n-1}} \right )

 

Example Question #11 : Series In Calculus

Does the following series converge or diverge:

\displaystyle \sum_{n=0}^{\infty }\frac{2x^2-x}{3x^2-7}

Possible Answers:

Diverge

Cannot be determined with the given information.

Converge

Correct answer:

Diverge

Explanation:

To test if this series diverges, before using a higher test, we may use the test for divergence.

The test for divergence informs that if the sequence does not approach 0 as n approaches infinity then the series diverges (NOTE: This only shows divergence, the converse is not true, that is, the test for divergence cannot be used to show convergence.).

We note that as  

\displaystyle \lim_{x\rightarrow \infty }\frac{2x^2-x}{3x^2-7}=\frac{2}{3},

this is derived from the fact that to find the limit as x approaches infinity of a function, one must first find the horizontal asymptote. Since this function is a rational expression with the highest power in both the numerator and denominator, the horizontal asymptote is equal to the quotient of the leading coefficients of both the numerator and denominator, which in this case is 2/3.

Since the limit as x tends to infinity of this series is a nonzero value, we may conclude that the series diverges by the Test for Divergence.  

 

Example Question #72 : Ap Calculus Bc

One of the following infinite series CONVERGES. Which is it?

Possible Answers:

\displaystyle \sum_{k=1}^{\infty} \frac{sin(k)}{k^2}

\displaystyle \sum_{k=2}^{\infty} \frac{x}{ln(x)}

\displaystyle \sum_{k=1}^{\infty} \frac{1}{k}

None of the others converge.

\displaystyle \sum_{k=1}^{\infty} (-1)^k sin(k)

Correct answer:

\displaystyle \sum_{k=1}^{\infty} \frac{sin(k)}{k^2}

Explanation:

\displaystyle \sum_{k=1}^{\infty} \frac{sin(k)}{k^2} converges due to the comparison test.

 

We start with the equation \displaystyle \frac{1}{k^2} =\frac{1}{k^2}. Since \displaystyle sin(k) \leq 1 for all values of k, we can multiply both side of the equation by the inequality and get \displaystyle \frac{sin(k)}{k^2} \leq \frac{1}{k^2} for all values of k. Since \displaystyle \sum_{k=1}^{\infty} \frac{1}{k^2} is a convergent p-series with \displaystyle p=2\displaystyle \sum_{k=1}^{\infty} \frac{sin(k)}{k^2}  hence also converges by the comparison test.

Example Question #12 : Introduction To Series In Calculus

Determine the nature of the following series having the general term:

\displaystyle \frac{9}{(9n+3)(9n+89)}

Possible Answers:

\displaystyle \frac{9}{82}

\displaystyle \frac{2}{9}

\displaystyle \frac{1}{9}

The series is convergent.

\displaystyle \frac{3}{9}

Correct answer:

The series is convergent.

Explanation:

We will use the Limit Comparison Test to show this result.

We first denote the genera term of the series by:

\displaystyle u_{n}=\frac{9}{(9n+3)(9n+89)} and \displaystyle v_{n}=\frac{9}{n^2}.

 

We have \displaystyle \lim_{n\rightarrow\infty}\frac{u_n}{v_{n}}=1 and the series have the same nature .

We know that

\displaystyle \sum_{n=1}^{\infty} u_{n}=\sum_{n=1}^{\infty} \frac{9}{n^2}   is convergent by comparing the integral

 

\displaystyle 9\int_{1}^{\infty} \frac{1}{x^2}dx which we know is convergent.

Therefore by the Limit Comparison Test.

we have \displaystyle \sum_{n=1}^{\infty} v_{n}=\sum_{n=1}^{\infty} \frac{9}{(9n+3)(9n+89)}.

 

Example Question #2 : Concepts Of Convergence And Divergence

If     \displaystyle \sum_{k=1}^{\infty} a_{k}     converges, which of the following statements must be true?

Possible Answers:

The limit of the \displaystyle n^{th} term as \displaystyle n approaches infinity is not zero.

For some large value of \displaystyle k\displaystyle a_{k} \geq (a_{k})^{3}.

The limit of the \displaystyle n^{th} partial sums as \displaystyle n approaches infinity is zero.

None of the other answers must be true.

Correct answer:

For some large value of \displaystyle k\displaystyle a_{k} \geq (a_{k})^{3}.

Explanation:

If the series converges, then we know the terms must approach zero. At some point, the terms will be less than 1, meaning when you take the third power of the term, it will be less than the original term.

Other answers are not true for a convergent series by the \displaystyle n^{th} term test for divergence.

In addition, the limit of the \displaystyle n^{th} partial sums refers to the value the series converges to. A convergent series need not converge to zero. The alternating harmonic series is a good counter example to this.

Learning Tools by Varsity Tutors