Calculus 3 : 3-Dimensional Space

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : 3 Dimensional Space

Find the length of the curve \(\displaystyle < e^{2t},e^{-2t},2\sqrt{2}t>\), from \(\displaystyle t=0\), to \(\displaystyle t=5\)

Possible Answers:

\(\displaystyle 10\)

None of the other answers

\(\displaystyle e^{10}-e^{-10}\)

\(\displaystyle e^{5}-e^{-5}\)

\(\displaystyle e^{10}\)

Correct answer:

\(\displaystyle e^{10}-e^{-10}\)

Explanation:

The formula for the length of a parametric curve in 3-dimensional space is \(\displaystyle l = \int_{t_0}^{t_1}\sqrt{(\frac{dx_1}{dt})^2+(\frac{dx_1}{dt})^2+(\frac{dx_3}{dt})^2} dt\)

Taking dervatives and substituting, we have 

\(\displaystyle l = \int_{0}^{5}\sqrt{(2e^{2t})^2+(-2e^{-2t})^2+(2\sqrt{2})^2} dt\)

\(\displaystyle l = \int_{0}^{5}\sqrt{4e^{4t}+4e^{-4t}+8} dt\)

\(\displaystyle l = 2\int_{0}^{5}\sqrt{e^{4t}+e^{-4t}+2} dt\). Factor a \(\displaystyle 4\) out of the square root.

\(\displaystyle l = 2\int_{0}^{5}\sqrt{e^{4t}+e^{-4t}+2e^{2t}e^{-2t}} dt\). "Uncancel" an \(\displaystyle e^{2t}, e^{-2t}\) next to the \(\displaystyle 2\). Now there is a perfect square inside the square root.

\(\displaystyle l = 2\int_{0}^{5}\sqrt{(e^{2t}+e^{-2t})^2} dt\). Factor

\(\displaystyle l = 2[\frac{1}{2}e^{2t}-\frac{1}{2}e^{-2t}]_{0}^{5}\). Take the square root, and integrate.

\(\displaystyle =2(\frac{e^{10}}{2}-\frac{e^{-10}}{2})-2({0})\)

\(\displaystyle =e^{10}-e^{-10}\)

 

Example Question #3 : Arc Length And Curvature

Find the length of the arc drawn out by the vector function \(\displaystyle F(t) = < a\cos t, a\sin t, at>\) with \(\displaystyle a>0\) from \(\displaystyle t = 0\) to \(\displaystyle t =\pi\).

Possible Answers:

None of the other answers

\(\displaystyle \pi\)

\(\displaystyle \sqrt2 a \pi\)

\(\displaystyle 2a^2\pi\)

\(\displaystyle \pi a\)

Correct answer:

\(\displaystyle \sqrt2 a \pi\)

Explanation:

To find the arc length of a function, we use the formula

 

\(\displaystyle \int_{t_{0}}^{t_{1}} \sqrt{(\frac{dx}{dt})^2 +(\frac{dy}{dt})^2 +(\frac{dz}{dt})^2} dt\).

Using \(\displaystyle t_0 =0, t_1 =\pi\) we have

\(\displaystyle =\int_0^\pi \sqrt{(-a\sin t)^2+(a\cos t)^2 +(a)^2} dt\)

\(\displaystyle =\int_0^\pi \sqrt{a^2\sin^2 t+a^2\cos^2 t +a^2} dt\)

\(\displaystyle =\int_0^\pi \sqrt{a^2(\sin^2 t+\cos^2 t) +a^2} dt\)

\(\displaystyle =\int_0^\pi \sqrt{a^2 +a^2} dt\)

\(\displaystyle =[\sqrt2at]_0^\pi\)

\(\displaystyle =\sqrt{2} a \pi\)

Example Question #4 : Arc Length And Curvature

Evaluate the curvature of the function \(\displaystyle y=10x^2\) at the point \(\displaystyle (1,10)\).

Possible Answers:

\(\displaystyle \frac{20}{400^{3/2}}\)

\(\displaystyle \frac{20}{400^{2/3}}\)

\(\displaystyle \frac{20}{401^{3/2}}\)

\(\displaystyle 0\)

\(\displaystyle \frac{20}{401^{2/3}}\)

Correct answer:

\(\displaystyle \frac{20}{401^{3/2}}\)

Explanation:

The formula for curvature of a Cartesian equation is \(\displaystyle \kappa(x)= \frac{|f''(x)|}{[1+(f'(x))^2]^{3/2}}\). (It's not the easiest to remember, but it's the most convenient form for Cartesian equations.)

We have \(\displaystyle f'(x) =20x, f''(x) = 20\), hence

\(\displaystyle \kappa(x)= \frac{|20|}{[1+(20x)^2]^{3/2}}\)

and \(\displaystyle \kappa(1)= \frac{|20|}{[1+(20(1))^2]^{3/2}} = \frac{20}{401^{3/2}}\).

Example Question #72 : 3 Dimensional Space

Find the length of the parametric curve

\(\displaystyle \vec{r}(t)= \left< \frac{\sqrt{10}}{2}t^2, \frac{1}{3}t^3,5t+14\right>\)

for \(\displaystyle 0\leq t \leq 2\).

Possible Answers:

\(\displaystyle \frac{25}{3}\)

\(\displaystyle \frac{38}{3}\)

\(\displaystyle 0\)

\(\displaystyle 5\)

\(\displaystyle \frac{10}{3}\)

Correct answer:

\(\displaystyle \frac{38}{3}\)

Explanation:

To find the solution, we need to evaluate

\(\displaystyle L = \int_0^2 \left| \vec{r}(t)' \right| dt\).

First, we find 

\(\displaystyle \vec{r}(t)' = \left< \sqrt{10}t, t^2, 5\right>\), which leads to 

\(\displaystyle \left| \vec{r}(t)' \right| = \sqrt{(\sqrt{10}t)^2+(t^2)^2+(5)^2}\)

\(\displaystyle \left| \vec{r}(t)' \right| = \sqrt{t^4+10t^2+25}=\sqrt{(t^2+5)^2}=t^2+5\).

So we have a final expression to integrate for our answer

\(\displaystyle L= \int_0^2 \left| \vec{r}(t)' \right| dt = \int_0^2 \left(t^2+5 \right )dt= \frac{(2)^3}{3}+5(2)=\frac{38}{3}\)

 

Example Question #7 : Arc Length And Curvature

Determine the length of the curve given below on the interval 0<t<2

\(\displaystyle \mathbf{r}=[2\sin t,\sqrt{5} t, 2\cos t]\)

Possible Answers:

\(\displaystyle 27\)

\(\displaystyle 6\)

\(\displaystyle 9\)

\(\displaystyle 18\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 6\)

Explanation:

The length of a curve r is given by:

\(\displaystyle L=\int_{t_1}^{t_2}|\mathbf{r'}(t)|dt\)

To solve:

\(\displaystyle \mathbf{r}'(t)=(2\cos t, \sqrt{5}, 2 \sin t)\)

\(\displaystyle |\mathbf{r'}(t)|=\sqrt{4\cos^2t+5+4\sin^2t}=\sqrt{4+5}=\sqrt{9}=3\)

\(\displaystyle L=\int^2_0 3 dt=3t|^2_0=6\)

Example Question #3 : Arc Length And Curvature

Find the arc length of the curve 

\(\displaystyle c(t)=< 3t,2sin(2t),2cos(2t)>\)

on the interval 

\(\displaystyle 0\leq t\leq 10\)

 

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 15\)

\(\displaystyle 75\)

\(\displaystyle 25\)

Correct answer:

\(\displaystyle 50\)

Explanation:

To find the arc length of the curve function

\(\displaystyle c(t)\)

on the interval \(\displaystyle a\leq t\leq b\)

we follow the formula

\(\displaystyle \int_a^b \sqrt{(\frac{\mathrm{dx} }{\mathrm{d} t})^2+(\frac{\mathrm{dy} }{\mathrm{d} t})^2+(\frac{\mathrm{dz} }{\mathrm{d} t})^2}\,dt\)

For the curve function in this problem we have

\(\displaystyle \frac{\mathrm{dx} }{\mathrm{d} t}=3\)

\(\displaystyle \frac{\mathrm{dy} }{\mathrm{d} t}=4cos(2t)\)

\(\displaystyle \frac{\mathrm{dz} }{\mathrm{d} t}=-4sin(2t)\)

and following the arc length formula we solve for the integral

\(\displaystyle \int_0^{10} \sqrt{(3)^2+(4cos(2t))^2+(-4sin(2t))^2}\,dt\)

\(\displaystyle =\int_0^{10} \sqrt{9+16sin^2(2t)+16cos^2(2t)}\,dt\)

\(\displaystyle =\int_0^{10} \sqrt{9+16(sin^2(2t)+cos^2(2t))}\,dt\)

\(\displaystyle =\int_0^{10} \sqrt{9+16}\,dt\)

\(\displaystyle =\int_0^{10} \sqrt{25}\,dt\)

\(\displaystyle =\int_0^{10} 5\,dt\)

\(\displaystyle =5t|_0^{10}\)

\(\displaystyle =5(10)-5(0)\)

Hence the arc length is \(\displaystyle 50\)

Example Question #2 : Arc Length And Curvature

Find the arc length of the curve function

\(\displaystyle c(t)=< 3t,4t,\frac{2}{3}t^{\frac{3}{2}}>\)

On the interval \(\displaystyle 0\leq t\leq5\)

Round to the nearest tenth.

Possible Answers:

\(\displaystyle 20.5\)

\(\displaystyle 26.2\)

\(\displaystyle 45.4\)

\(\displaystyle 35.5\)

Correct answer:

\(\displaystyle 26.2\)

Explanation:

To find the arc length of the curve function

\(\displaystyle c(t)\)

on the interval \(\displaystyle a\leq t\leq b\)

we follow the formula

\(\displaystyle \int_a^b \sqrt{(\frac{\mathrm{dx} }{\mathrm{d} t})^2+(\frac{\mathrm{dy} }{\mathrm{d} t})^2+(\frac{\mathrm{dz} }{\mathrm{d} t})^2}\,dt\)

For the curve function in this problem we have

\(\displaystyle \frac{\mathrm{dx} }{\mathrm{d} t}=3\)

\(\displaystyle \frac{\mathrm{dy} }{\mathrm{d} t}=4\)

\(\displaystyle \frac{\mathrm{dz} }{\mathrm{d} t}=t^{\frac{1}{2}}\)

and following the arc length formula we solve for the integral

\(\displaystyle \int_0^{5} \sqrt{(3)^2+(4)^2+(t^{\frac{1}{2}})^2}\,dt\)

\(\displaystyle =\int_0^{10} \sqrt{t+25}\,dt\)

Using u-substitution, we have

\(\displaystyle u=t+25\) and \(\displaystyle du=dt\)

The integral then becomes

\(\displaystyle =\int_{25}^{30} \sqrt{u}\,du\)

\(\displaystyle =\frac{2}{3}u^{\frac{3}{2}}|_{25}^{30}\)

\(\displaystyle =\frac{2}{3}([30^{\frac{3}{2}}]-[25^{\frac{3}{2}}])\)

Hence the arc length is \(\displaystyle 26.2\)

Example Question #3 : Arc Length And Curvature

Given that a curve is defined by \(\displaystyle \vec{r}=< 2\sin 2t,2\cos 2t,4t>\), find the arc length in the interval \(\displaystyle 0\leq t \leq \frac{\pi}{2}\)

Possible Answers:

\(\displaystyle 4\sqrt{\pi}\)

\(\displaystyle \sqrt{2}\pi\)

\(\displaystyle 4\sqrt{2}\pi\)

\(\displaystyle 2\sqrt{2}\pi\)

Correct answer:

\(\displaystyle 2\sqrt{2}\pi\)

Explanation:

Untitled

Example Question #601 : Calculus 3

Find the arc length of the parametric curve 

\(\displaystyle c(t)=< \frac{2}{3}t^{3/2}, 5t, 3>\)

on the interval \(\displaystyle 0\leq t \leq 11\).

Round to the nearest tenth.

Possible Answers:

\(\displaystyle 60.7\)

\(\displaystyle 81.3\)

\(\displaystyle 57.1\)

\(\displaystyle 96.6\)

Correct answer:

\(\displaystyle 60.7\)

Explanation:

To find the arc length of the curve function

 \(\displaystyle c(t)\)

on the interval 

 \(\displaystyle a\leq t \leq b\)

we follow the formula

 \(\displaystyle \int_{a}^{b}\sqrt{(\frac{\mathrm{dx} }{\mathrm{d} t})^2+(\frac{\mathrm{dy} }{\mathrm{d} t})^2+(\frac{\mathrm{dz} }{\mathrm{d} t})^2}\,dt\)

For the curve function in this problem we have

 \(\displaystyle \frac{\mathrm{d} x}{\mathrm{d} t}=t^{1/2}\)

\(\displaystyle \frac{\mathrm{d} y}{\mathrm{d} t}=5\)

\(\displaystyle \frac{\mathrm{d} z}{\mathrm{d} t}=0\)

and following the arc length formula we solve for the integral

 \(\displaystyle \int_{0}^{11}\sqrt{(t^{1/2})^2+(5)^2+(0)^2}\,dt\)

\(\displaystyle \int_{0}^{11}\sqrt{t+25}\,dt\)

And using u-substitution, we set \(\displaystyle u=t+25\) and then solve the integral

\(\displaystyle \int_{25}^{36}\sqrt{u}\,du\)

\(\displaystyle =\frac{2}{3}u^{3/2}|_{25}^{36}\)

\(\displaystyle =\frac{2}{3}([36]^{3/2}-[25]^{3/2})\)

\(\displaystyle =\frac{2}{3}(216-125)\)

\(\displaystyle =\frac{2}{3}(91)\)

Which is approximately

\(\displaystyle 60.7\) units

Example Question #73 : 3 Dimensional Space

Determine the curvature of the vector \(\displaystyle \left \langle 3t^2,5t,0\right \rangle\).

Possible Answers:

\(\displaystyle k=\frac{30}{(36t^2+25)}\)

\(\displaystyle k=\frac{30}{(36t^2+25)^{\frac{3}{2}}}\)

\(\displaystyle k=\frac{25}{(36t^2+25)^{\frac{3}{2}}}\)

\(\displaystyle k=\frac{30}{(36t^2+25)^{\frac{1}{2}}}\)

Correct answer:

\(\displaystyle k=\frac{30}{(36t^2+25)^{\frac{3}{2}}}\)

Explanation:

Using the formula for curvature \(\displaystyle k=\frac{\left \| r'(t)\times r''(t) \right \|}{\left \| r'(t)\right \|^3}\)\(\displaystyle r'(t)=6ti+5j, r''(t)=6i\),  \(\displaystyle r'(t)\times r''(t) =-30k, \left \| r'(t)\times r''(t)\right \|=30\), and \(\displaystyle \left \| r'(t)\right \|\sqrt{36t^2+25}\). Plugging into the formula, we get \(\displaystyle k=\frac{30}{(36t^2+25)^{\frac{3}{2}}}\)

Learning Tools by Varsity Tutors