Calculus 3 : Applications of Partial Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Applications Of Partial Derivatives

Calculate \(\displaystyle R = \vec{\bigtriangledown } \cdot \vec{f}\) given \(\displaystyle \vec{f}= (x+3y)\hat{x}+(x^2+\sqrt{z})\hat{y}+(xy\sqrt{z})\hat{z}\)

Possible Answers:

\(\displaystyle R = 1 \hat{x} +\frac{xy}{2\sqrt{z}} \hat{z}\)

\(\displaystyle R = 1 +\frac{xy}{2\sqrt{z}}\)

\(\displaystyle R = 1 +\frac{xy}{\sqrt{z}}\)

\(\displaystyle R = \frac{xy}{2\sqrt{z}}\)

Correct answer:

\(\displaystyle R = 1 +\frac{xy}{2\sqrt{z}}\)

Explanation:

By definition, 

\(\displaystyle \vec{\bigtriangledown } \cdot \vec{f} = \frac{\partial f_x}{\partial x}+\frac{\partial f_y}{\partial y}+\frac{\partial f_z}{\partial z}\), where \(\displaystyle f_x, f_y, f_z\) are the respective \(\displaystyle x,y,z\) components of \(\displaystyle \vec{f}\).

Therefore, we need to calculate the above terms, shown as

\(\displaystyle \begin{align*} \frac{\partial f_x}{\partial x}&=1 \\ \frac{\partial f_y}{\partial y}&= 0\\ \frac{\partial f_z}{\partial z}&= \frac{xy}{2\sqrt{z}} \end{align*}\)

Therefore,

\(\displaystyle R = 1 +\frac{xy}{2\sqrt{z}}\).

Example Question #41 : Applications Of Partial Derivatives

Find \(\displaystyle \nabla f\), where \(\displaystyle f(x,y,z)=xzy+\tan(xz)\)

Possible Answers:

\(\displaystyle \left \langle yz+sec^2(xz), xz, xy+sec^2(xz)\right \rangle\)

\(\displaystyle \left \langle yz+z\sec^2(xz), 0, xy+x\sec^2(xz)\right \rangle\)

\(\displaystyle \left \langle yz+z\sec(xz), xz, xy+x\sec(xz)\right \rangle\)

\(\displaystyle \left \langle yz+z\sec^2(xz), xz, xy+x\sec^2(xz)\right \rangle\)

Correct answer:

\(\displaystyle \left \langle yz+z\sec^2(xz), xz, xy+x\sec^2(xz)\right \rangle\)

Explanation:

The gradient vector of f, \(\displaystyle \nabla f\), is equal to \(\displaystyle \left \langle f_x, f_y, f_z\right \rangle\)

So, we must find the partial derivatives of the function with respect to x, y, and z, keeping the other variables constant for each partial derivative:

\(\displaystyle f_x=yz+z\sec^2(xz)\)

\(\displaystyle f_y=xz\)

\(\displaystyle f_z=xy+x\sec^2(xz)\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \tan(x)=\sec^2(x)\)

Plugging this in to a vector, we get

\(\displaystyle \left \langle yz+z\sec^2(xz), xz, xy+x\sec^2(xz)\right \rangle\)

Example Question #11 : Gradient Vector, Tangent Planes, And Normal Lines

Find \(\displaystyle \nabla f\), where f is the following function:

\(\displaystyle f(x, y,z)=z^2+e^z\cos(xy)+xyz\)

 

Possible Answers:

\(\displaystyle (-x-y)(e^z\sin(xy)+yz e^z\sin(xy))+xz 2z+e^z\cos(xy)+xy\)

\(\displaystyle \left \langle -ye^z\sin(xy), -xe^z\sin(xy), 2z+e^z\cos(xy) \right \rangle\)

\(\displaystyle \left \langle ye^z\sin(xy)+yz, xe^z\sin(xy)+xz, 2z+e^z\cos(xy)+xy \right \rangle\)

\(\displaystyle \left \langle -ye^z\sin(xy)+yz, -xe^z\sin(xy)+xz, 2z+e^z\cos(xy)+xy \right \rangle\)

Correct answer:

\(\displaystyle \left \langle -ye^z\sin(xy)+yz, -xe^z\sin(xy)+xz, 2z+e^z\cos(xy)+xy \right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \nabla f= \left \langle f_x, f_y, f_z \right \rangle\)

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

Now, we find the partial derivatives:

\(\displaystyle f_x=-ye^z\sin(xy)+yz\)

\(\displaystyle f_y=-xe^z\sin(xy)+xz\)

\(\displaystyle f_z=2z+e^z\cos(xy)+xy\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(x)g(x)=f'(x)g(x)+f(x)g'(x)\), \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\), \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u\frac{\mathrm{d} u}{\mathrm{d} x}\), \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)\)

Example Question #41 : Applications Of Partial Derivatives

Find \(\displaystyle f_{yxz}\) of the following function:

\(\displaystyle f(x, y, z)=xy^2z^2-z\tan(x)\)

Possible Answers:

\(\displaystyle 4yz-\sec^2(x)\)

\(\displaystyle 4yz\)

\(\displaystyle 2xyz^2\)

\(\displaystyle 2yz^2\)

Correct answer:

\(\displaystyle 4yz\)

Explanation:

To find the given partial derivative of the function, we must treat the other variable(s) as constants. For higher order partial derivatives, we work from left to right for the given variables.

To start, we must find the partial derivative with respect to y:

\(\displaystyle f_y=2xyz^2\)

The following rules were used to find the derivative:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)

Next, we find the derivative of the above function above with respect to x:

\(\displaystyle f_{yx}=2yz^2\)

The rule used is stated above.

Finally, find the partial derivative of the above function with respect to z:

\(\displaystyle f_{yxz}=4yz\)

The rule used is already stated above.

 

Example Question #20 : Gradient Vector, Tangent Planes, And Normal Lines

Find \(\displaystyle \nabla f\) of the given function:

\(\displaystyle f(x, y, z)=z^2e^{x}+\cos(3y)\)

Possible Answers:

\(\displaystyle \left \langle e^x, -3\sin(3y), 2ze^x\right \rangle\)

\(\displaystyle \left \langle z^2e^x, -3\sin(3y), 2ze^x\right \rangle\)

\(\displaystyle \left \langle z^2e^x, 3\sin(3y), 2ze^x\right \rangle\)

\(\displaystyle z^2e^x -3\sin(3y) +2ze^x\)

Correct answer:

\(\displaystyle \left \langle z^2e^x, -3\sin(3y), 2ze^x\right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle\)

So, we must find the partial derivatives. To find the given partial derivative of the function, we must treat the other variable(s) as constants.

\(\displaystyle f_x=z^2e^x\)

\(\displaystyle f_y=-3\sin(3y)\)

\(\displaystyle f_z=2ze^x\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f'(g(x))\cdot g'(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x\)

Example Question #1572 : Calculus 3

Find \(\displaystyle \nabla f\) of the function:

\(\displaystyle f(x, y, z)=\tan(xy)+z^2+4z+4\)

Possible Answers:

\(\displaystyle \left \langle y\sec^2(xy), x\sec^2(xy), 2z+4\right \rangle\)

\(\displaystyle \left \langle y\sec^2(xy), x\sec^2(xy), 2z+8\right \rangle\)

\(\displaystyle \left \langle y\sec(xy), x\sec(xy), 2z+4\right \rangle\)

\(\displaystyle \left \langle xsec^2(xy), ysec^2(xy), 2z+4\right \rangle\)

Correct answer:

\(\displaystyle \left \langle y\sec^2(xy), x\sec^2(xy), 2z+4\right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle\)

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are 

\(\displaystyle f_x=y\sec^2(xy)\)

\(\displaystyle f_y=x\sec^2(xy)\)

\(\displaystyle f_z=2z+4\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \tan(x)=\sec^2(x)\)

Example Question #1581 : Calculus 3

Find \(\displaystyle \nabla f\) for the given function:

\(\displaystyle f(x, y, z)=e^{\tan(xz)}+\sin(y)\)

 

Possible Answers:

\(\displaystyle \left \langle sec^2(xz)e^{\tan(xz)}, \cos(y), sec^2(xz)e^{\tan(xz)}\right \rangle\)

\(\displaystyle \left \langle z\sec^2(xz)e^{\tan(xz)}, \cos(y), x\sec^2(xz)e^{\tan(xz)}\right \rangle\)

\(\displaystyle \left \langle x\sec^2(xz)e^{\tan(xz)}, \cos(y), z\sec^2(xz)e^{\tan(xz)}\right \rangle\)

\(\displaystyle \left \langle z\sec^2(xz)e^{\tan(xz)}, -\cos(y), x\sec^2(xz)e^{\tan(xz)}\right \rangle\)

Correct answer:

\(\displaystyle \left \langle z\sec^2(xz)e^{\tan(xz)}, \cos(y), x\sec^2(xz)e^{\tan(xz)}\right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle\)

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\(\displaystyle f_x=z\sec^2(xz)e^{\tan(xz)}\)

\(\displaystyle f_y=\cos(y)\)

\(\displaystyle f_z=x\sec^2(xz)e^{\tan(xz)}\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u\frac{\mathrm{d} u}{\mathrm{d} x}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \tan(x)=\sec^2(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)

Example Question #22 : Gradient Vector, Tangent Planes, And Normal Lines

Find \(\displaystyle \nabla f\) of the following function:

\(\displaystyle f(x, y, z)=x^2+z^4+y^4\cos(z)\)

Possible Answers:

\(\displaystyle \left \langle 2x, 4y^3, 4z^3-\sin(z)\right \rangle\)

\(\displaystyle \left \langle 2x, 4y^3\cos(z), 4z^3\right \rangle\)

\(\displaystyle \left \langle 2x, 4y^3\cos(z), 4z^3+y^4\sin(z)\right \rangle\)

\(\displaystyle \left \langle 2x, 4y^3\cos(z), 4z^3-y^4\sin(z)\right \rangle\)

Correct answer:

\(\displaystyle \left \langle 2x, 4y^3\cos(z), 4z^3-y^4\sin(z)\right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle\)

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\(\displaystyle f_x=2x\)

\(\displaystyle f_y=4y^3\cos(z)\)

\(\displaystyle f_z=4z^3-y^4\sin(z)\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)\)

Example Question #23 : Gradient Vector, Tangent Planes, And Normal Lines

Find \(\displaystyle \nabla f\) for the following function:

\(\displaystyle f(x,y,z)=e^{\sec(x)}+\tan(yz)\)

Possible Answers:

\(\displaystyle \sec(x)\tan(x)e^{\sec(x)}+z\sec^2(yz)+y\sec^2(yz)\)

\(\displaystyle \left \langle \sec(x)\tan(x)e^{\sec(x)}, y\sec^2(yz), z\sec^2(yz)\right \rangle\)

\(\displaystyle \left \langle \sec(x)\tan(x)e^{\sec(x)}, z\sec(yz), y\sec(yz)\right \rangle\)

\(\displaystyle \left \langle \sec(x)\tan(x)e^{\sec(x)}, z\sec^2(yz), y\sec^2(yz)\right \rangle\)

Correct answer:

\(\displaystyle \left \langle \sec(x)\tan(x)e^{\sec(x)}, z\sec^2(yz), y\sec^2(yz)\right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle\)

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\(\displaystyle f_x=\sec(x)\tan(x)e^{\sec(x)}\)

\(\displaystyle f_y=z\sec^2(yz)\)

\(\displaystyle f_z=y\sec^2(yz)\)

The derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \sec(x)=\sec(x)\tan(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \tan(x)=\sec^2(x)\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u\frac{\mathrm{d} u}{\mathrm{d} x}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\)

Example Question #24 : Gradient Vector, Tangent Planes, And Normal Lines

Find \(\displaystyle \bigtriangledown f\) for the following function:

\(\displaystyle f(x, y, z)=xyz^4+y^2+e^{xz}\)

Possible Answers:

\(\displaystyle \left \langle z^4y+xe^{xz}, xz^4+2y, 4z^3xy+ze^{xz}\right \rangle\)

\(\displaystyle z^4y+ze^{xz} + xz^4+2y+4z^3xy+xe^{xz}\)

\(\displaystyle \left \langle xe^{xz}, 2y, ze^{xz}\right \rangle\)

\(\displaystyle \left \langle z^4y+ze^{xz}, xz^4+2y, 4z^3xy+xe^{xz}\right \rangle\)

Correct answer:

\(\displaystyle \left \langle z^4y+ze^{xz}, xz^4+2y, 4z^3xy+xe^{xz}\right \rangle\)

Explanation:

The gradient of a function is given by

\(\displaystyle \bigtriangledown f=\left \langle f_x, f_y, f_z\right \rangle\)

To find the given partial derivative of the function, we must treat the other variable(s) as constants. 

The partial derivatives are

\(\displaystyle f_x=z^4y+ze^{xz}\)

\(\displaystyle f_y=xz^4+2y\)

\(\displaystyle f_z=4z^3xy+xe^{xz}\)

The partial derivatives were found using the following rules:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u\frac{\mathrm{d} u}{\mathrm{d} x}\)\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\)

Learning Tools by Varsity Tutors