Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #53 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=14\widehat{i}-6\widehat{j} and \displaystyle \overrightarrow{b}=-5\widehat{i}-3\widehat{j}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle -72

\displaystyle -88

\displaystyle 48

\displaystyle -12

\displaystyle -52

Correct answer:

\displaystyle -52

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=14\widehat{i}-6\widehat{j} and \displaystyle \overrightarrow{b}=-5\widehat{i}-3\widehat{j}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(-70)+(18)=-52

Example Question #54 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=16\widehat{i}+8\widehat{j} and \displaystyle \overrightarrow{b}=\widehat{i}+2\widehat{j}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 32

\displaystyle 16

\displaystyle 40

\displaystyle 24

\displaystyle 0

Correct answer:

\displaystyle 32

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=16\widehat{i}+8\widehat{j} and \displaystyle \overrightarrow{b}=\widehat{i}+2\widehat{j}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(16)+(16)=32

Example Question #55 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=4\widehat{i}-24\widehat{j} and \displaystyle \overrightarrow{b}=7\widehat{i}+\widehat{j}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 4

\displaystyle 172

\displaystyle 26

\displaystyle 52

\displaystyle -162

Correct answer:

\displaystyle 4

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=4\widehat{i}-24\widehat{j} and \displaystyle \overrightarrow{b}=7\widehat{i}+\widehat{j}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(28)+(-24)=4

Example Question #56 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=16\widehat{i}+17\widehat{j} and \displaystyle \overrightarrow{b}=\widehat{i}-\widehat{j}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 33

\displaystyle 271

\displaystyle -1

\displaystyle -33

\displaystyle 1

Correct answer:

\displaystyle -1

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=16\widehat{i}+17\widehat{j} and \displaystyle \overrightarrow{b}=\widehat{i}-\widehat{j}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(16)+(-17)=-1

Example Question #2371 : Calculus 3

Given the following two vectors, \displaystyle \overrightarrow{a}=46\widehat{i}+23\widehat{j} and \displaystyle \overrightarrow{b}=\widehat{i}+2\widehat{j}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 207

\displaystyle 0

\displaystyle 69

\displaystyle 92

\displaystyle 23

Correct answer:

\displaystyle 92

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=46\widehat{i}+23\widehat{j} and \displaystyle \overrightarrow{b}=\widehat{i}+2\widehat{j}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(46)+(46)=92

Example Question #58 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=-3\widehat{j} and \displaystyle \overrightarrow{b}=15\widehat{i}+5\widehat{j}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 15

\displaystyle -15

\displaystyle -60

\displaystyle -45

\displaystyle 45

Correct answer:

\displaystyle -15

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=-3\widehat{j} and \displaystyle \overrightarrow{b}=15\widehat{i}+5\widehat{j}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(0)+(-15)=-15

Example Question #59 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=3\widehat{i}+5\widehat{k} and \displaystyle \overrightarrow{b}=2\widehat{j}+6\widehat{k}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 45

\displaystyle 15

\displaystyle 64

\displaystyle 36

\displaystyle 30

Correct answer:

\displaystyle 30

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=3\widehat{i}+5\widehat{k} and \displaystyle \overrightarrow{b}=2\widehat{j}+6\widehat{k}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(0)+(0)+(30)=30

Example Question #375 : Vectors And Vector Operations

Given the following two vectors, \displaystyle \overrightarrow{a}=7\widehat{k} and \displaystyle \overrightarrow{b}=\widehat{i}+2\widehat{j}+3\widehat{k}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 35

\displaystyle 21

\displaystyle 14

\displaystyle 42

\displaystyle 7

Correct answer:

\displaystyle 21

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=7\widehat{k} and \displaystyle \overrightarrow{b}=\widehat{i}+2\widehat{j}+3\widehat{k}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(0)+(0)+(21)=21

Example Question #61 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=\widehat{i}-6\widehat{j}-3\widehat{k} and \displaystyle \overrightarrow{b}=3\widehat{i}+\widehat{j}+2\widehat{k}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 18

\displaystyle -12

\displaystyle -9

\displaystyle 15

\displaystyle 6

Correct answer:

\displaystyle -9

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=\widehat{i}-6\widehat{j}-3\widehat{k} and \displaystyle \overrightarrow{b}=3\widehat{i}+\widehat{j}+2\widehat{k}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(3)+(-6)+(-6)=-9

Example Question #62 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=5\widehat{i}+\widehat{j}+13\widehat{k} and \displaystyle \overrightarrow{b}=-2\widehat{i}-\widehat{j}+\widehat{k}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 1

\displaystyle 23

\displaystyle 24

\displaystyle 21

\displaystyle 2

Correct answer:

\displaystyle 2

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}

\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \displaystyle \overrightarrow{a}=5\widehat{i}+\widehat{j}+13\widehat{k} and \displaystyle \overrightarrow{b}=-2\widehat{i}-\widehat{j}+\widehat{k}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(-10)+(-1)+(13)=2

Learning Tools by Varsity Tutors