Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2501 : Calculus 3

Find the unit normal vector of \displaystyle v(t)=5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}.

Possible Answers:

\displaystyle N(t)=\frac{5}{\sqrt{29}}cos(t)\hat{i}+\frac{5}{\sqrt{29}}sin(t)\hat{j}+\frac{2}{\sqrt{29}}\hat{k}

\displaystyle N(t)=5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}

\displaystyle N(t)=sin(t)\hat{i}+cos(t)\hat{j}

\displaystyle N(t)=-sin(t)\hat{i}+cos(t)\hat{j}

Correct answer:

\displaystyle N(t)=-sin(t)\hat{i}+cos(t)\hat{j}

Explanation:

To find the unit normal vector, you must first find the unit tangent vector.  The equation for the unit tangent vector, \displaystyle T(t),  is

\displaystyle T(t)=\frac{r(t)}{\left \| r(t)\right \|}

where \displaystyle r(t) is the vector and \displaystyle \left \| r(t)\right \| is the magnitude of the vector.

The equation for the unit normal vector,\displaystyle N(t),  is 

\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}

where \displaystyle T'(t) is the derivative of the unit tangent vector and \displaystyle \left \| T'(t)\right \| is the magnitude of the derivative of the unit vector.

 

For this problem

\displaystyle v(t)=5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}

\displaystyle \left \| v(t)\right \|=\sqrt{\left (5cos(t) \right )^{2}+\left (5sin(t) \right )^{2}+(2)^{2}}=\sqrt{25+4}=\sqrt{29}

\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}}{\sqrt{29}}

\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{5}{\sqrt{29}}cos(t)\hat{i}+\frac{5}{\sqrt{29}}sin(t)\hat{j}+\frac{2}{\sqrt{29}}\hat{k}

\displaystyle T'(t)=\frac{d}{dt}\left (\frac{5}{\sqrt{29}}cos(t)\hat{i}+\frac{5}{\sqrt{29}}sin(t)\hat{j}+\frac{2}{\sqrt{29}}\hat{k} \right )

\displaystyle T'(t)=\frac{-5}{\sqrt{29}}sin(t)\hat{i}+\frac{5}{\sqrt{29}}cos(t)\hat{j}+0\hat{k}

\displaystyle T'(t)=\frac{-5}{\sqrt{29}}sin(t)\hat{i}+\frac{5}{\sqrt{29}}cos(t)\hat{j}

\displaystyle \left \| T'(t)\right \|=\sqrt{\left (\frac{-5}{\sqrt{29}}sin(t) \right )^{2}+\left (\frac{5}{\sqrt{29}}cos(t) \right )^{2}}

\displaystyle \left \| T'(t)\right \|=\sqrt{\frac{25}{29}sin^2(t)+\frac{25}{29}cos^2(t)}=\sqrt{\frac{25}{29}}=\frac{5}{\sqrt{29}}

\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}=\frac{\frac{-5}{\sqrt{29}}sin(t)\hat{i}+\frac{5}{\sqrt{29}}cos(t)\hat{j}}{\frac{5}{\sqrt{29}}}=-sin(t)\hat{i}+cos(t)\hat{j}

Example Question #1 : Normal Vectors

Find a normal vector \displaystyle \vec{n} that is perpendicular to the plane given below.

\displaystyle -3x + 5y -z = 25 

Possible Answers:

No such vector exists.

\displaystyle \vec{n}= \hat{x}+\hat{y}+\hat{z}

\displaystyle \vec{n}= 3 \hat{x}+5\hat{y}-\hat{z}

\displaystyle \vec{n}= -3 \hat{x}+5\hat{y}-\hat{z}

\displaystyle \vec{n}= -3 \hat{x}-5\hat{y}+\hat{z}

Correct answer:

\displaystyle \vec{n}= -3 \hat{x}+5\hat{y}-\hat{z}

Explanation:

Derived from properties of plane equations, one can simply pick off the coefficients of the cartesian coordinate variable to give a normal vector \displaystyle \vec{n} that is perpendicular to that plane.  For a given plane, we can write

\displaystyle ax+by+cz=C, \vec{n}= a \hat{x}+b\hat{y}+c\hat{z}.

From this result, we find that for our case, 

\displaystyle \vec{n}= -3 \hat{x}+5\hat{y}-\hat{z}.

Example Question #1 : Normal Vectors

Which of the following is FALSE concerning a vector normal to a plane (in \displaystyle 3-dimensional space)?

Possible Answers:

It is parallel to any other normal vector to the plane.

All the other answers are true.

The cross product of any two normal vectors to the plane is \displaystyle < 0,0,0>.

Multiplying it by a scalar gives another normal vector to the plane.

It is orthogonal to the plane.

Correct answer:

All the other answers are true.

Explanation:

These are all true facts about normal vectors to a plane. (If the surface is not a plane, then a few of these no longer hold.)

Example Question #2 : Normal Vectors

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 5\\0 \\7 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} -14\\11 \\10 \end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 5\\0 \\7 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} -14\\11 \\10 \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=-70+0+70=0

The two vectors are orthogonal.

Example Question #1 : Normal Vectors

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 7\\7 \\3 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix}1 \\-1 \\2 \end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are not orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 7\\7 \\3 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix}1 \\-1 \\2 \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=7-7+6=6

The two vectors are not orthogonal.

Example Question #2502 : Calculus 3

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 11\\8 \\-10 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\3 \\4 \end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are not orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 11\\8 \\-10 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\3 \\4 \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=22+24-40=6

The two vectors are not orthogonal.

Example Question #11 : Normal Vectors

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 13\\5 \\12 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\2 \\-3 \end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 13\\5 \\12 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\2 \\-3 \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=26+10-36=0

The two vectors are orthogonal.

Example Question #12 : Normal Vectors

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 11\\-8 \\2 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\ 1\\ -7\end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 11\\-8 \\2 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\ 1\\ -7\end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=22-8-14=0

The two vectors are orthogonal.

Example Question #13 : Normal Vectors

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 3\\0 \\3 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 0\\0 \\1 \end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are not orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 3\\0 \\3 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 0\\0 \\1 \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0+0+3=3

The two vectors are not orthogonal.

Example Question #11 : Normal Vectors

Determine whether the two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 4\\ 9\\ 0\end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 0\\ 0\\-6 \end{bmatrix}, are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}

To find the dot product of two vectors given the notation

\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}

Simply multiply terms across rows:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3

For our vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 4\\ 9\\ 0\end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} 0\\ 0\\-6 \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0+0+0=0

The two vectors are orthogonal.

Learning Tools by Varsity Tutors