Calculus 3 : Calculus Review

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #221 : Calculus 3

Calculate \(\displaystyle f' (1)\) of \(\displaystyle f(x)= \ln \left(\frac{6x^2}{\left(x+4 \right )} \right )\).

Possible Answers:

\(\displaystyle \frac{9}{5}\)

\(\displaystyle 0\)

\(\displaystyle \ln 6\)

\(\displaystyle -\frac{2}{15}\)

Correct answer:

\(\displaystyle \frac{9}{5}\)

Explanation:

We begin by rewriting our function in a more convenient way,

\(\displaystyle f(x) = \ln \left(\frac{6x^2}{\left(x+4 \right )} \right )= \ln \left(6x^2 \right )- \ln \left(x+4 \right )\).

This makes taking the derivative a little easier.  We can therefore write

\(\displaystyle f' (x) = \frac{2}{x}-\frac{1}{x+4}\), or \(\displaystyle f' (1) = 2 - \frac{1}{5} = \frac{9}{5}\).

Example Question #41 : Calculus Review

Calculate \(\displaystyle f'(5)\) of \(\displaystyle f(x)= \sin \left(\pi x \right )\).

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle \pi\)

\(\displaystyle \frac{\pi}{2}\)

\(\displaystyle - \pi\)

Correct answer:

\(\displaystyle - \pi\)

Explanation:

By the chain rule, we can show

\(\displaystyle \frac{d}{dx} \sin \left(f(x) \right )= cos \left(f(x) \right ) \cdot f'(x)\), or in this case,

\(\displaystyle \frac{d}{dx} \sin \left( \pi x \right )= \cos \left( \pi x \right ) \cdot \pi\Rightarrow \cos \left(5 \pi \right ) \cdot \pi = -\pi\).

Example Question #42 : Calculus Review

Find \(\displaystyle f'(x)\) given \(\displaystyle f(x)=x^{x^2}\)

Possible Answers:

\(\displaystyle x^{x^2}\left(1+2 \ln x \right )\)

\(\displaystyle x^{x^2+1}\)

\(\displaystyle x^{x^2+1}\left(1+2 \ln x \right )\)

\(\displaystyle x^{x^2+1}\left(2 \ln x \right )\)

Correct answer:

\(\displaystyle x^{x^2+1}\left(1+2 \ln x \right )\)

Explanation:

This derivative must be found using logarithmic differentiation.  Consider the following

\(\displaystyle \begin{align*} f(x)&=x^{x^2} \\ \log_x f&= x^2\\ \frac{\ln f}{\ln x}&=x^2 \\ \ln f &= x^2 \ln x \\ \frac{f'}{f}&=x+2x \ln x \\ f'&= \left(x + 2x \ln x \right )x^{x^2}= f'(x) = x^{x^2+1}\left(1+2 \ln x \right ) \end{align*}\)

Example Question #43 : Calculus Review

Find \(\displaystyle f'(x)\) given \(\displaystyle f(x)= 7^{3x}\)

Possible Answers:

\(\displaystyle 7^{3x} \cdot \ln 7^3\)

\(\displaystyle \ln 7^3\)

\(\displaystyle 3 \cdot 7^{3x}\)

\(\displaystyle 3 \cdot 7^{2x}\)

Correct answer:

\(\displaystyle 7^{3x} \cdot \ln 7^3\)

Explanation:

This derivative is most easily done by logarithmic differentiation.  Consider the following

\(\displaystyle \begin{align*} f(x)&=7^{3x} \\ \ln f&=\ln 7 \cdot 3x \\ \frac{f'}{f}&=\ln 7 \cdot 3 \\ f'(x)&=7^{3x} \cdot 3 \ln 7 \\ f'(x)&=7^{3x} \cdot \ln 7^3 \end{align*}\)

Example Question #44 : Calculus Review

Find the derivative of:  \(\displaystyle y=-cos(5x+2)\)

Possible Answers:

\(\displaystyle -5sin(5x+2)\)

\(\displaystyle -5sin(5x+2)cos(5x+2)\)

\(\displaystyle 5sin(5x+2)\)

\(\displaystyle -sin(5x+2)\)

\(\displaystyle 5sin(5x+2)cos(5x+2)\)

Correct answer:

\(\displaystyle 5sin(5x+2)\)

Explanation:

Take the derivative of the cosine function.  This will also require chain rule, which is the derivative of the inner function.

\(\displaystyle \frac{dy}{dx} = -[-sin(5x+2)] \cdot 5\)

The answer is:  \(\displaystyle \frac{dy}{dx}= 5sin(5x+2)\)

Example Question #45 : Calculus Review

Find the derivative:  \(\displaystyle ln(cos(2x))\)

Possible Answers:

\(\displaystyle -2tan(2x)\)

\(\displaystyle \frac{1}{cos(2x)}\)

\(\displaystyle -\frac{2}{sin(2x)}\)

\(\displaystyle \frac{1}{sin(2x)}\)

\(\displaystyle tan(2x)\)

Correct answer:

\(\displaystyle -2tan(2x)\)

Explanation:

This problem will require multiple chain rule.  Take the derivative of natural log, and then apply the inner function of the natural log, cosine, and then also apply the chain rule for \(\displaystyle 2x\).

\(\displaystyle \frac{d}{dx}ln(cos(2x)) = \frac{1}{cos(2x)} \cdot -sin(2x) \cdot 2\)

Combine this into one term and simplify.

\(\displaystyle -\frac{2sin(2x)}{cos(2x)} = -2tan(2x)\)

The answer is:  \(\displaystyle -2tan(2x)\)

Example Question #46 : Calculus Review

Evaluate \(\displaystyle \frac{d}{dx}(yx+y)\)

Possible Answers:

None of the other answers

\(\displaystyle y+1\)

\(\displaystyle y+x\)

\(\displaystyle y\)

\(\displaystyle x+1\)

Correct answer:

None of the other answers

Explanation:

The correct answer is \(\displaystyle (x+1)y'+y\).

 

Since we are taking the (full) derivative of an expression involving \(\displaystyle x\) and \(\displaystyle y\), we must use implicit differentiation. We proceed as follows

\(\displaystyle \frac{d}{dx}(yx+y)\) start.

\(\displaystyle =\frac{d}{dx}(yx)+\frac{d}{dx}(y)\)

\(\displaystyle =(xy'+(1)y)+y'\). Using \(\displaystyle \frac{d}{dx}y=y'\), and the Product Rule.

\(\displaystyle =(1+x)y' +y\). Factor

 

 

Example Question #47 : Calculus Review

Evaluate the limit

\(\displaystyle \lim_{h \to 0}\frac{12(\frac{1}{2}+h)^{12}+12(\frac{1}{2})^{12}}{h}\)

by interpreting the limit in terms of the definition of the derivative.

Possible Answers:

The limit does not exist.

\(\displaystyle \frac{9}{128}\)

\(\displaystyle 0\)

\(\displaystyle 48\)

\(\displaystyle 72\)

Correct answer:

\(\displaystyle \frac{9}{128}\)

Explanation:

The definition of the derivative is

\(\displaystyle \lim_{h \to 0}\frac{f(a+h)-f(a)}{h} = f'(a)\).

Equating

\(\displaystyle \lim_{h \to 0}\frac{12(\frac{1}{2}+h)^{12}+12(\frac{1}{2})^{12}}{h}\), to the definition of the derivative, we have

\(\displaystyle \lim_{h \to 0}\frac{12(\frac{1}{2}+h)^{12}+12(\frac{1}{2})^{12}}{h} = \frac{d}{dx}(12x^{12})|_{x=1/2}=144x^{11}|_{x=1/2}\)

\(\displaystyle =144(\frac{1}{2})^{11}=\frac{144}{2048} =\frac{9}{128}\).

Example Question #48 : Derivatives

What is the derivative of \(\displaystyle 5x^4+2x^2+\frac {3}{x}\)?

Possible Answers:

\(\displaystyle -20x^3+4x-\frac {3}{x^2}\)

\(\displaystyle 20x^3+4x-\frac {3}{x^2}\)

\(\displaystyle 20x^3-4x-\frac {3}{x^2}\)

\(\displaystyle 20x^3+4x-\frac {3}{x}\)

Correct answer:

\(\displaystyle 20x^3+4x-\frac {3}{x^2}\)

Explanation:

Step 1: Take the derivative of the first term: \(\displaystyle 5x^4\)

\(\displaystyle (5x^4)'=20x^{4-1}=20x^3\) via the power rule.
Step 2: Take the derivative of the next term: \(\displaystyle 2x^2\)
\(\displaystyle (2x^2)'=4x^{2-1}=4x\), again using the product rule.
Step 3: Take the derivative of the last term \(\displaystyle \frac {3}{x}\).

We will have to use Quotient Rule here.

Find the derivative of f(x) and g(x):

\(\displaystyle f'(x)=0\)\(\displaystyle g'(x)=1\).

Use the formula: \(\displaystyle \frac {f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}\)

\(\displaystyle \frac {0(x)-1(3)}{(x)^2}=\frac {-3}{x^2}\).

Step 4: Put all the final terms from highest to lowest degree...

We get:\(\displaystyle 20x^3+4x-\frac {3}{x^2}\).

Example Question #45 : Calculus Review

Find the derivative of

\(\displaystyle \sin^n (x^m)\)

Possible Answers:

\(\displaystyle (x^{m-1})\sin^{n-1}(x^m)\)

\(\displaystyle n(x^{m-1})\sin^{n-1}(x^m)\)

\(\displaystyle mn(x^{m-1})\sin^{n-1}(x^m)\)

\(\displaystyle m^2n^2(x^{m})\sin^{n}(x^m)\)

Correct answer:

\(\displaystyle mn(x^{m-1})\sin^{n-1}(x^m)\)

Explanation:

Untitled

Learning Tools by Varsity Tutors