Calculus 3 : Dot Product

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #321 : Vectors And Vector Operations

For what angle(s) is the dot product of two vectors \(\displaystyle \vec{A} \cdot \vec{B}=0\)?

Possible Answers:

\(\displaystyle 90 ^{\circ}, 270 ^{\circ}\)

\(\displaystyle 45^{\circ}\)

\(\displaystyle 0^{\circ}\)

\(\displaystyle 360^{\circ}\)

\(\displaystyle 180^{\circ}\)

Correct answer:

\(\displaystyle 90 ^{\circ}, 270 ^{\circ}\)

Explanation:

We have the following equation that shows the relation between the dot product of two vectors, \(\displaystyle \vec{A} \cdot \vec{B}\), to the relative angle between them \(\displaystyle \theta\),

\(\displaystyle \frac{\vec{A} \cdot \vec{B}}{\left| \vec{A}\right| \left| \vec{B} \right|} = \cos \theta\)

From this, we can see that the numerator \(\displaystyle \vec{A} \cdot \vec{B}\) will be \(\displaystyle 0\) whenever \(\displaystyle \cos \theta=0\).  

\(\displaystyle \cos \theta = 0\) for all odd-multiples of \(\displaystyle \frac{\pi}{2}\), which in one rotation, includes \(\displaystyle \frac{\pi}{2}=90 ^{\circ},3\frac{\pi}{2}=270^{\circ}\).

Example Question #11 : Dot Product

Compute \(\displaystyle < 0,1,x,t> \cdot < 2,4>\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle < 0,4,2x,4t>\)

\(\displaystyle 4+4x+4t\)

None of the other answers

\(\displaystyle 2+2x+4t\)

Correct answer:

None of the other answers

Explanation:

There is no correct way to compute the above. In order to take the dot product, the two vectors must have the same number of components. These vectors have \(\displaystyle 4\) and \(\displaystyle 2\) components respectively.

Example Question #12 : Dot Product

Compute \(\displaystyle < t_1,0,5> \cdot < t_8 ,8, 4>\)

Possible Answers:

None of the other answers

\(\displaystyle t_1t_8 +20\)

\(\displaystyle < t_1t_8, 0, 20>\)

\(\displaystyle t_1t_8-20\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle t_1t_8 +20\)

Explanation:

To computer the dot product, we multiply the values of common components together and sum their totals. The outcome is a scalar value, not a vector.

So we have

\(\displaystyle < t_1,0,5> \cdot < t_8 ,8, 4> = (t_1)(t_8)+(0)(8)+(5)(4) = t_1t_8+20\)

Example Question #13 : Dot Product

Given the following two vectors, \(\displaystyle \overrightarrow{a}=3\widehat{i}-1\widehat{j}+4\widehat{k}\) and \(\displaystyle \overrightarrow{b}=2\widehat{i}+6\widehat{j}-2\widehat{k}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 0\)

\(\displaystyle 12\)

\(\displaystyle 20\)

\(\displaystyle -8\)

Correct answer:

\(\displaystyle -8\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=3\widehat{i}-1\widehat{j}+4\widehat{k}\) and \(\displaystyle \overrightarrow{b}=2\widehat{i}+6\widehat{j}-2\widehat{k}\)

The dot product can be found following the example above:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(3*2)+(-1*6)+(4*-2)=-8\)

Example Question #13 : Dot Product

Given the following two vectors, \(\displaystyle \overrightarrow{a}=4\widehat{i}+5\widehat{j}+2\widehat{k}\) and \(\displaystyle \overrightarrow{b}=3\widehat{i}-3\widehat{j}+3\widehat{k}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 21\)

\(\displaystyle 3\)

\(\displaystyle 33\)

\(\displaystyle -3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=4\widehat{i}+5\widehat{j}+2\widehat{k}\) and \(\displaystyle \overrightarrow{b}=3\widehat{i}-3\widehat{j}+3\widehat{k}\)

The dot product can be found following the example above:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(4*3)+(5*-3)+(2*3)=3\)

Example Question #331 : Vectors And Vector Operations

Given the following two vectors, \(\displaystyle \overrightarrow{a}=2\widehat{i}-2\widehat{j}+8\widehat{k}\) and \(\displaystyle \overrightarrow{b}=3\widehat{i}-1\widehat{j}+1\widehat{k}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle 14\)

\(\displaystyle 24\)

\(\displaystyle 12\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 16\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=2\widehat{i}-2\widehat{j}+8\widehat{k}\) and \(\displaystyle \overrightarrow{b}=3\widehat{i}-1\widehat{j}+1\widehat{k}\)

The dot product can be found following the example above:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(2*3)+(-2*-1)+(8*1)=16\)

Example Question #331 : Vectors And Vector Operations

Given the following two vectors, \(\displaystyle \overrightarrow{a}=cos(x)\widehat{i}+xy\widehat{j}+sin(y)\widehat{k}\) and \(\displaystyle \overrightarrow{b}=2xy\widehat{i}+3x\widehat{j}+2y\widehat{k}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle 2y^2cos(x)sin(y)+3xy^2+2x^2\)

\(\displaystyle 2ycos(x)+3xy^2+2xysin(y)\)

\(\displaystyle 2xycos(x)+3x^2y+2ysin(y)\)

\(\displaystyle 2ycos(x)+3x^2y+2xysin(y)\)

\(\displaystyle 2y^2cos(x)+3xy^2+2x^2sin(y)\)

Correct answer:

\(\displaystyle 2xycos(x)+3x^2y+2ysin(y)\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=cos(x)\widehat{i}+xy\widehat{j}+sin(y)\widehat{k}\) and \(\displaystyle \overrightarrow{b}=2xy\widehat{i}+3x\widehat{j}+2y\widehat{k}\)

The dot product can be found following the example above:

\(\displaystyle {\overrightarrow{a}\cdot\overrightarrow{b}=(cos(x)*2xy)+(xy*3x)+(sin(y)*2y)=2xycos(x)+3x^2y+2ysin(y)}\)

Example Question #331 : Vectors And Vector Operations

Given the following two vectors, \(\displaystyle \overrightarrow{a}=7\widehat{i}-1\widehat{j}-2\widehat{k}\) and \(\displaystyle \overrightarrow{b}=2\widehat{i}-14\widehat{j}+3\widehat{k}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle -36\)

\(\displaystyle 34\)

\(\displaystyle 8\)

\(\displaystyle 22\)

\(\displaystyle -6\)

Correct answer:

\(\displaystyle 22\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=7\widehat{i}-1\widehat{j}-2\widehat{k}\) and \(\displaystyle \overrightarrow{b}=2\widehat{i}-14\widehat{j}+3\widehat{k}\)

The dot product can be found following the example above:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(7*2)+(-1*-14)+(-2*3)=22\)

Example Question #2331 : Calculus 3

Given the following two vectors, \(\displaystyle \overrightarrow{a}=13\widehat{i}+5\widehat{j}+12\widehat{k}\) and \(\displaystyle \overrightarrow{b}=3\widehat{i}+4\widehat{j}+5\widehat{k}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle 360\)

\(\displaystyle 72\)

\(\displaystyle 111\)

\(\displaystyle 119\)

\(\displaystyle 108\)

Correct answer:

\(\displaystyle 119\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=13\widehat{i}+5\widehat{j}+12\widehat{k}\) and \(\displaystyle \overrightarrow{b}=3\widehat{i}+4\widehat{j}+5\widehat{k}\)

The dot product can be found following the example above:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(13*3)+(5*4)+(12*5)=119\)

Example Question #13 : Dot Product

Given the following two vectors, \(\displaystyle \overrightarrow{a}=4\widehat{i}-2\widehat{j}\) and \(\displaystyle \overrightarrow{b}=2\widehat{i}-4\widehat{j}\), calculate the dot product between them,\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}\).

Possible Answers:

\(\displaystyle 16\)

\(\displaystyle -4\)

\(\displaystyle 64\)

\(\displaystyle 8\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 16\)

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\(\displaystyle \overrightarrow{a}=a_1\widehat{x_1}+a_2\widehat{x_2}+a_3\widehat{x_3}+...+a_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{b}=b_1\widehat{x_1}+b_2\widehat{x_2}+b_3\widehat{x_3}+...+b_n\widehat{x_n}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\)

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors \(\displaystyle \overrightarrow{a}=4\widehat{i}-2\widehat{j}\) and \(\displaystyle \overrightarrow{b}=2\widehat{i}-4\widehat{j}\)

The dot product can be found following the example above:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=(4*2)+(-2*-4)=16\)

Learning Tools by Varsity Tutors