Calculus 3 : Triple Integrals

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #171 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{0}^{1}\int_{-4}^{0}\int_{0}^{1}(12z^3cos{(x)})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 3sin{(4)}\)

\(\displaystyle -768sin{(1)}\)

\(\displaystyle -12sin{(1)}\)

\(\displaystyle 12sin{(1)}\)

\(\displaystyle 768sin{(1)}\)

Correct answer:

\(\displaystyle 12sin{(1)}\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{0}^{1}\int_{-4}^{0}\int_{0}^{1}(12z^3cos{(x)})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{0}^{1}\int_{-4}^{0}\int_{0}^{1}(12z^3cos{(x)})dxdydz=\int_{0}^{1}\int_{-4}^{0}(12z^3sin{(x)})dydz|_{0}^{1}\\&\int_{0}^{1}\int_{-4}^{0}(12z^3sin{(1)})dydz=\int_{0}^{1}(12yz^3sin{(1)})dz|_{-4}^{0}\\&\int_{0}^{1}(48z^3sin{(1)})dz=12z^4sin{(1)}dz|_{0}^{1}=12sin{(1)}\end{align*}\)

Example Question #172 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-3}^{2}\int_{-3}^{1}\int_{-2}^{3}(9y^2sin{(5x)})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 84cos{(10)} - 84cos{(15)}\)

\(\displaystyle 105cos{(15)} - 105cos{(5)}\)

\(\displaystyle 84cos{(15)} + 84cos{(10)}\)

\(\displaystyle 84cos{(10)} + 84cos{(15)}\)

\(\displaystyle 84cos{(15)} - 84cos{(10)}\)

Correct answer:

\(\displaystyle 84cos{(10)} - 84cos{(15)}\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-3}^{2}\int_{-3}^{1}\int_{-2}^{3}(9y^2sin{(5x)})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-3}^{2}\int_{-3}^{1}\int_{-2}^{3}(9y^2sin{(5x)})dxdydz=\int_{-3}^{2}\int_{-3}^{1}(-{(9y^2cos{(5x)})}/5)dydz|_{-2}^{3}\\&\int_{-3}^{2}\int_{-3}^{1}(9y^2{(cos{(10)}/5 - cos{(15)}/5)})dydz=\int_{-3}^{2}(y^3{({(3cos{(10)})}/5 - {(3cos{(15)})}/5)})dz|_{-3}^{1}\\&\int_{-3}^{2}({(84cos{(10)})}/5 - {(84cos{(15)})}/5)dz=z{({(84cos{(10)})}/5 - {(84cos{(15)})}/5)}dz|_{-3}^{2}=84cos{(10)} - 84cos{(15)}\end{align*}\)

Example Question #173 : Multiple Integration

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{2}^{6}\int_{-1}^{3}\int_{2}^{5}(-6ysin{(x)})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 72cos{(6)} - 72cos{(2)}\)

\(\displaystyle 384cos{(5)} - 384cos{(2)}\)

\(\displaystyle 252cos{(3)} - 252cos{(1)}\)

\(\displaystyle 252cos{(6)} - 252cos{(2)}\)

\(\displaystyle 96cos{(5)} - 96cos{(2)}\)

Correct answer:

\(\displaystyle 96cos{(5)} - 96cos{(2)}\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{2}^{6}\int_{-1}^{3}\int_{2}^{5}(-6ysin{(x)})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{2}^{6}\int_{-1}^{3}\int_{2}^{5}(-6ysin{(x)})dxdydz=\int_{2}^{6}\int_{-1}^{3}(6ycos{(x)})dydz|_{2}^{5}\\&\int_{2}^{6}\int_{-1}^{3}(-6y{(cos{(2)} - cos{(5)})})dydz=\int_{2}^{6}(-y^2{(3cos{(2)} - 3cos{(5)})})dz|_{-1}^{3}\\&\int_{2}^{6}(24cos{(5)} - 24cos{(2)})dz=-z{(24cos{(2)} - 24cos{(5)})}dz|_{2}^{6}=96cos{(5)} - 96cos{(2)}\end{align*}\)

Example Question #173 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-3}^{-2}\int_{-3}^{1}\int_{1}^{6}(4y - 4x^3)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 680\)

\(\displaystyle -5260\)

\(\displaystyle 1220\)

\(\displaystyle 1580\)

\(\displaystyle -5380\)

Correct answer:

\(\displaystyle -5260\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-3}^{-2}\int_{-3}^{1}\int_{1}^{6}(4y - 4x^3)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-3}^{-2}\int_{-3}^{1}\int_{1}^{6}(4y - 4x^3)dxdydz=\int_{-3}^{-2}\int_{-3}^{1}(4xy - x^4)dydz|_{1}^{6}\\&\int_{-3}^{-2}\int_{-3}^{1}(20y - 1295)dydz=\int_{-3}^{-2}(5y{(2y - 259)})dz|_{-3}^{1}\\&\int_{-3}^{-2}(-5260)dz=-5260zdz|_{-3}^{-2}=-5260\end{align*}\)

Example Question #174 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{3}^{5}\int_{0}^{4}\int_{1}^{4}(80x - 120z^2)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -42240\)

\(\displaystyle -12480\)

\(\displaystyle -7680\)

\(\displaystyle -10560\)

\(\displaystyle -43200\)

Correct answer:

\(\displaystyle -42240\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{3}^{5}\int_{0}^{4}\int_{1}^{4}(80x - 120z^2)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{3}^{5}\int_{0}^{4}\int_{1}^{4}(80x - 120z^2)dxdydz=\int_{3}^{5}\int_{0}^{4}(40x{(x - 3z^2)})dydz|_{1}^{4}\\&\int_{3}^{5}\int_{0}^{4}(600 - 360z^2)dydz=\int_{3}^{5}(-y{(360z^2 - 600)})dz|_{0}^{4}\\&\int_{3}^{5}(2400 - 1440z^2)dz=-480z{(z^2 - 5)}dz|_{3}^{5}=-42240\end{align*}\)

Example Question #175 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-4}^{1}\int_{5}^{10}\int_{-2}^{1}(6{(x + 6)}^2)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 10050\)

\(\displaystyle 13950\)

\(\displaystyle 24750\)

\(\displaystyle 4050\)

\(\displaystyle 82950\)

Correct answer:

\(\displaystyle 13950\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-4}^{1}\int_{5}^{10}\int_{-2}^{1}(6{(x + 6)}^2)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-4}^{1}\int_{5}^{10}\int_{-2}^{1}(6{(x + 6)}^2)dxdydz=\int_{-4}^{1}\int_{5}^{10}(2{(x + 6)}^3)dydz|_{-2}^{1}\\&\int_{-4}^{1}\int_{5}^{10}(558)dydz=\int_{-4}^{1}(558y)dz|_{5}^{10}\\&\int_{-4}^{1}(2790)dz=2790zdz|_{-4}^{1}=13950\end{align*}\)

Example Question #171 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-1}^{4}\int_{3}^{4}\int_{5}^{8}(4{(y - 2)}^3)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 3240\)

\(\displaystyle 6075\)

\(\displaystyle -195\)

\(\displaystyle 225\)

\(\displaystyle 8050\)

Correct answer:

\(\displaystyle 225\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-1}^{4}\int_{3}^{4}\int_{5}^{8}(4{(y - 2)}^3)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-1}^{4}\int_{3}^{4}\int_{5}^{8}(4{(y - 2)}^3)dxdydz=\int_{-1}^{4}\int_{3}^{4}(4x{(y - 2)}^3)dydz|_{5}^{8}\\&\int_{-1}^{4}\int_{3}^{4}(12{(y - 2)}^3)dydz=\int_{-1}^{4}(3{(y - 2)}^4)dz|_{3}^{4}\\&\int_{-1}^{4}(45)dz=45zdz|_{-1}^{4}=225\end{align*}\)

Example Question #44 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{4}^{9}\int_{2}^{3}\int_{3}^{8}(4{(y - 7)}^3 - 4x)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -9775\)

\(\displaystyle -9875\)

\(\displaystyle -875\)

\(\displaystyle -1925\)

\(\displaystyle -1525\)

Correct answer:

\(\displaystyle -9775\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{4}^{9}\int_{2}^{3}\int_{3}^{8}(4{(y - 7)}^3 - 4x)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{4}^{9}\int_{2}^{3}\int_{3}^{8}(4{(y - 7)}^3 - 4x)dxdydz=\int_{4}^{9}\int_{2}^{3}(4x{(y - 7)}^3 - 2x^2)dydz|_{3}^{8}\\&\int_{4}^{9}\int_{2}^{3}(20{(y - 7)}^3 - 110)dydz=\int_{4}^{9}(5{({(y - 7)}^3 - 22)}{(y - 7)})dz|_{2}^{3}\\&\int_{4}^{9}(-1955)dz=-1955zdz|_{4}^{9}=-9775\end{align*}\)

Example Question #172 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-1}^{2}\int_{5}^{6}\int_{2}^{4}(2x - 4z)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -66\)

\(\displaystyle -96\)

\(\displaystyle 24\)

\(\displaystyle 54\)

\(\displaystyle -126\)

Correct answer:

\(\displaystyle 24\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-1}^{2}\int_{5}^{6}\int_{2}^{4}(2x - 4z)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-1}^{2}\int_{5}^{6}\int_{2}^{4}(2x - 4z)dxdydz=\int_{-1}^{2}\int_{5}^{6}(x{(x - 4z)})dydz|_{2}^{4}\\&\int_{-1}^{2}\int_{5}^{6}(12 - 8z)dydz=\int_{-1}^{2}(-y{(8z - 12)})dz|_{5}^{6}\\&\int_{-1}^{2}(12 - 8z)dz=-4z{(z - 3)}dz|_{-1}^{2}=24\end{align*}\)

Example Question #176 : Triple Integrals

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-1}^{3}\int_{-3}^{0}\int_{3}^{7}(y^3 - x)dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -564\)

\(\displaystyle 6912\)

\(\displaystyle 7032\)

\(\displaystyle 0\)

\(\displaystyle -372\)

Correct answer:

\(\displaystyle -564\)

Explanation:

\(\displaystyle \begin{align*}&\text{When performing a triple integral, it is worth noting that the order}\\&\text{in which the integration performed does not entirely matter, since each variable will be}\\&\text{integrated independently, with the others being treated as constants for the}\\&\text{puposes of integration. For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-1}^{3}\int_{-3}^{0}\int_{3}^{7}(y^3 - x)dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-1}^{3}\int_{-3}^{0}\int_{3}^{7}(y^3 - x)dxdydz=\int_{-1}^{3}\int_{-3}^{0}(-{(x{(x - 2y^3)})}/2)dydz|_{3}^{7}\\&\int_{-1}^{3}\int_{-3}^{0}(4y^3 - 20)dydz=\int_{-1}^{3}(y^4 - 20y)dz|_{-3}^{0}\\&\int_{-1}^{3}(-141)dz=-141zdz|_{-1}^{3}=-564\end{align*}\)

Learning Tools by Varsity Tutors