Calculus 3 : Normal Vectors

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Normal Vectors

Find the Unit Normal Vector to the given plane. 

\(\displaystyle 3x+3y+4z=10\).

 

Possible Answers:

\(\displaystyle V_n=(\frac{3}{{34}}, \frac{3}{{34}}, \frac{4}{{34}} )\)

\(\displaystyle V_n=(\frac{1}{\sqrt{34}}, \frac{1}{\sqrt{34}}, \frac{1}{\sqrt{34}} )\)

\(\displaystyle V_n=(3, 3, 4 )\)

\(\displaystyle V_n=(\frac{3}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac{4}{\sqrt{34}} )\)

\(\displaystyle V_n=(\frac{1}{{34}}, \frac{1}{{34}}, \frac{1}{{34}} )\)

Correct answer:

\(\displaystyle V_n=(\frac{3}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac{4}{\sqrt{34}} )\)

Explanation:

Recall the definition of the Unit Normal Vector.

\(\displaystyle V_n=\frac{V}{||V||}\)

Let \(\displaystyle V=(3,3,4)\)

 

\(\displaystyle ||V||=\sqrt{3^2+3^2+4^2}=\sqrt{34}\)

 

\(\displaystyle V_n=(\frac{3}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac{4}{\sqrt{34}} )\)

Example Question #2 : Normal Vectors

Find the unit normal vector of \(\displaystyle v(t)=t^{2}\hat{i}+3t^{2}\hat{j}\).

Possible Answers:

\(\displaystyle N(t)=t^{2}\hat{i}+3t^{2}\hat{j}\)

\(\displaystyle N(t)=\frac{1}{\sqrt{10}}\hat{i}+\frac{3}{\sqrt{10}}\hat{j}\)

Does not exist

\(\displaystyle N(t)=2t\hat{i}+6t\hat{j}\)

Correct answer:

Does not exist

Explanation:

To find the unit normal vector, you must first find the unit tangent vector.  The equation for the unit tangent vector, \(\displaystyle T(t)\),  is

\(\displaystyle T(t)=\frac{r(t)}{\left \| r(t)\right \|}\)

where \(\displaystyle r(t)\) is the vector and \(\displaystyle \left \| r(t)\right \|\) is the magnitude of the vector.

The equation for the unit normal vector,\(\displaystyle N(t)\),  is 

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}\)

where \(\displaystyle T'(t)\) is the derivative of the unit tangent vector and \(\displaystyle \left \| T'(t)\right \|\) is the magnitude of the derivative of the unit vector.

 

For this problem

\(\displaystyle v(t)=t^{2}\hat{i}+3t^{2}\hat{j}\)

\(\displaystyle \left \| v(t)\right \|=\sqrt{\left (t^{2} \right )^{2}+\left (3t^{2} \right )^{2}}=\sqrt{t^{4}+9t^{4}}=\sqrt{10t^{4}}=t^{2}\sqrt{10}\)

\(\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{t^{2}\hat{i}+3t^{2}\hat{j}}{t^{2}\sqrt{10}}=\frac{1}{\sqrt{10}}\hat{i}+\frac{3}{\sqrt{10}}\hat{j}\)

\(\displaystyle T'(t)=\frac{d}{dt}\left ( \frac{1}{\sqrt{10}}\hat{i}+\frac{3}{\sqrt{10}}\hat{j} \right )=0\)

\(\displaystyle \left \| T'(t)\right \|=\sqrt{\left (0\right )^{2}}=0\)

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}=\frac{0}{0}=DNE\)

There is no unit normal vector of \(\displaystyle v(t)=t^{2}\hat{i}+3t^{2}\hat{j}\).

Example Question #1 : Normal Vectors

Find the unit normal vector of \(\displaystyle v(t)=sin(t)\hat{i}+cos(t)\hat{j}\).

Possible Answers:

Does not exist

\(\displaystyle N(t)=1\)

\(\displaystyle N(t)=cos(t)\hat{i}-sin(t)\hat{j}\)

\(\displaystyle N(t)=sin(t)\hat{i}+cos(t)\hat{j}\)

Correct answer:

\(\displaystyle N(t)=cos(t)\hat{i}-sin(t)\hat{j}\)

Explanation:

To find the unit normal vector, you must first find the unit tangent vector.  The equation for the unit tangent vector, \(\displaystyle T(t)\),  is

\(\displaystyle T(t)=\frac{r(t)}{\left \| r(t)\right \|}\)

where \(\displaystyle r(t)\) is the vector and \(\displaystyle \left \| r(t)\right \|\) is the magnitude of the vector.

The equation for the unit normal vector,\(\displaystyle N(t)\),  is 

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}\)

where \(\displaystyle T'(t)\) is the derivative of the unit tangent vector and \(\displaystyle \left \| T'(t)\right \|\) is the magnitude of the derivative of the unit vector.

 

For this problem

\(\displaystyle v(t)=sin(t)\hat{i}+cos(t)\hat{j}\)

\(\displaystyle \left \| v(t)\right \|=\sqrt{\left (sin(t) \right )^{2}+\left (cos(t) \right )^{2}}=\sqrt{1}=1\)

\(\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{sin(t)\hat{i}+cos(t)\hat{j}}{1}=sin(t)\hat{i}+cos(t)\hat{j}\)

\(\displaystyle T'(t)=\frac{d}{dt}\left (sin(t)\hat{i}+cos(t)\hat{j} \right )=cos(t)\hat{i}-sin(t)\hat{j}\)

\(\displaystyle \left \| T'(t)\right \|=\sqrt{\left (cos(t) \right )^{2}+\left (sin(t) \right )^{2}}=\sqrt{1}=1\)

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}=\frac{cos(t)\hat{i}-sin(t)\hat{j}}{1}=cos(t)\hat{i}-sin(t)\hat{j}\)

Example Question #3 : Normal Vectors

Find the unit normal vector of \(\displaystyle v(t)=e^{t}\hat{i}+2e^{t}\hat{j}\).

Possible Answers:

DNE

\(\displaystyle N(t)=e^{t}\sqrt{5}\)

\(\displaystyle N(t)=e^{t}\hat{i}+2e^{t}\hat{j}\)

\(\displaystyle N(t)=\frac{1}{\sqrt{5}}\hat{i}+\frac{2}{\sqrt{5}}\hat{j}\)

Correct answer:

DNE

Explanation:

To find the unit normal vector, you must first find the unit tangent vector.  The equation for the unit tangent vector, \(\displaystyle T(t)\),  is

\(\displaystyle T(t)=\frac{r(t)}{\left \| r(t)\right \|}\)

where \(\displaystyle r(t)\) is the vector and \(\displaystyle \left \| r(t)\right \|\) is the magnitude of the vector.

The equation for the unit normal vector,\(\displaystyle N(t)\),  is 

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}\)

where \(\displaystyle T'(t)\) is the derivative of the unit tangent vector and \(\displaystyle \left \| T'(t)\right \|\) is the magnitude of the derivative of the unit vector.

 

For this problem

\(\displaystyle v(t)=e^{t}\hat{i}+2e^{t}\hat{j}\)

\(\displaystyle \left \| v(t)\right \|=\sqrt{\left (e^{t} \right )^{2}+\left (2e^{t} \right )^{2}}=\sqrt{e^{2t}+4e^{2t}}=\sqrt{5e^{2t}}=e^{t}\sqrt{5}\)

\(\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{e^{t}\hat{i}+2e^{t}\hat{j}}{e^{t}\sqrt{5}}=\frac{1}{\sqrt{5}}\hat{i}+\frac{2}{\sqrt{5}}\hat{j}\)

\(\displaystyle T'(t)=\frac{d}{dt}\left (\frac{1}{\sqrt{5}}\hat{i}+\frac{2}{\sqrt{5}}\hat{j} \right )=0\)

\(\displaystyle \left \| T'(t)\right \|=0\)

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}=\frac{0}{0}=DNE\)

The normal vector of \(\displaystyle v(t)=e^{t}\hat{i}+2e^{t}\hat{j}\) does not exist.

Example Question #1 : Normal Vectors

Find the unit normal vector of \(\displaystyle v(t)=5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}\).

Possible Answers:

\(\displaystyle N(t)=5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}\)

\(\displaystyle N(t)=\frac{5}{\sqrt{29}}cos(t)\hat{i}+\frac{5}{\sqrt{29}}sin(t)\hat{j}+\frac{2}{\sqrt{29}}\hat{k}\)

\(\displaystyle N(t)=sin(t)\hat{i}+cos(t)\hat{j}\)

\(\displaystyle N(t)=-sin(t)\hat{i}+cos(t)\hat{j}\)

Correct answer:

\(\displaystyle N(t)=-sin(t)\hat{i}+cos(t)\hat{j}\)

Explanation:

To find the unit normal vector, you must first find the unit tangent vector.  The equation for the unit tangent vector, \(\displaystyle T(t)\),  is

\(\displaystyle T(t)=\frac{r(t)}{\left \| r(t)\right \|}\)

where \(\displaystyle r(t)\) is the vector and \(\displaystyle \left \| r(t)\right \|\) is the magnitude of the vector.

The equation for the unit normal vector,\(\displaystyle N(t)\),  is 

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}\)

where \(\displaystyle T'(t)\) is the derivative of the unit tangent vector and \(\displaystyle \left \| T'(t)\right \|\) is the magnitude of the derivative of the unit vector.

 

For this problem

\(\displaystyle v(t)=5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}\)

\(\displaystyle \left \| v(t)\right \|=\sqrt{\left (5cos(t) \right )^{2}+\left (5sin(t) \right )^{2}+(2)^{2}}=\sqrt{25+4}=\sqrt{29}\)

\(\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{5cos(t)\hat{i}+5sin(t)\hat{j}+2\hat{k}}{\sqrt{29}}\)

\(\displaystyle T(t)=\frac{v(t)}{\left \| v(t)\right \|}=\frac{5}{\sqrt{29}}cos(t)\hat{i}+\frac{5}{\sqrt{29}}sin(t)\hat{j}+\frac{2}{\sqrt{29}}\hat{k}\)

\(\displaystyle T'(t)=\frac{d}{dt}\left (\frac{5}{\sqrt{29}}cos(t)\hat{i}+\frac{5}{\sqrt{29}}sin(t)\hat{j}+\frac{2}{\sqrt{29}}\hat{k} \right )\)

\(\displaystyle T'(t)=\frac{-5}{\sqrt{29}}sin(t)\hat{i}+\frac{5}{\sqrt{29}}cos(t)\hat{j}+0\hat{k}\)

\(\displaystyle T'(t)=\frac{-5}{\sqrt{29}}sin(t)\hat{i}+\frac{5}{\sqrt{29}}cos(t)\hat{j}\)

\(\displaystyle \left \| T'(t)\right \|=\sqrt{\left (\frac{-5}{\sqrt{29}}sin(t) \right )^{2}+\left (\frac{5}{\sqrt{29}}cos(t) \right )^{2}}\)

\(\displaystyle \left \| T'(t)\right \|=\sqrt{\frac{25}{29}sin^2(t)+\frac{25}{29}cos^2(t)}=\sqrt{\frac{25}{29}}=\frac{5}{\sqrt{29}}\)

\(\displaystyle N(t)=\frac{T'(t)}{\left \| T'(t)\right \|}=\frac{\frac{-5}{\sqrt{29}}sin(t)\hat{i}+\frac{5}{\sqrt{29}}cos(t)\hat{j}}{\frac{5}{\sqrt{29}}}=-sin(t)\hat{i}+cos(t)\hat{j}\)

Example Question #1 : Normal Vectors

Find a normal vector \(\displaystyle \vec{n}\) that is perpendicular to the plane given below.

\(\displaystyle -3x + 5y -z = 25\) 

Possible Answers:

No such vector exists.

\(\displaystyle \vec{n}= \hat{x}+\hat{y}+\hat{z}\)

\(\displaystyle \vec{n}= 3 \hat{x}+5\hat{y}-\hat{z}\)

\(\displaystyle \vec{n}= -3 \hat{x}+5\hat{y}-\hat{z}\)

\(\displaystyle \vec{n}= -3 \hat{x}-5\hat{y}+\hat{z}\)

Correct answer:

\(\displaystyle \vec{n}= -3 \hat{x}+5\hat{y}-\hat{z}\)

Explanation:

Derived from properties of plane equations, one can simply pick off the coefficients of the cartesian coordinate variable to give a normal vector \(\displaystyle \vec{n}\) that is perpendicular to that plane.  For a given plane, we can write

\(\displaystyle ax+by+cz=C, \vec{n}= a \hat{x}+b\hat{y}+c\hat{z}\).

From this result, we find that for our case, 

\(\displaystyle \vec{n}= -3 \hat{x}+5\hat{y}-\hat{z}\).

Example Question #1 : Normal Vectors

Which of the following is FALSE concerning a vector normal to a plane (in \(\displaystyle 3\)-dimensional space)?

Possible Answers:

It is parallel to any other normal vector to the plane.

All the other answers are true.

The cross product of any two normal vectors to the plane is \(\displaystyle < 0,0,0>\).

Multiplying it by a scalar gives another normal vector to the plane.

It is orthogonal to the plane.

Correct answer:

All the other answers are true.

Explanation:

These are all true facts about normal vectors to a plane. (If the surface is not a plane, then a few of these no longer hold.)

Example Question #2 : Normal Vectors

Determine whether the two vectors, \(\displaystyle \overrightarrow{a}=\begin{bmatrix} 5\\0 \\7 \end{bmatrix}\) and \(\displaystyle \overrightarrow{b}=\begin{bmatrix} -14\\11 \\10 \end{bmatrix}\), are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}\)

To find the dot product of two vectors given the notation

\(\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}\)

Simply multiply terms across rows:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)

For our vectors, \(\displaystyle \overrightarrow{a}=\begin{bmatrix} 5\\0 \\7 \end{bmatrix}\) and \(\displaystyle \overrightarrow{b}=\begin{bmatrix} -14\\11 \\10 \end{bmatrix}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=-70+0+70=0\)

The two vectors are orthogonal.

Example Question #1 : Normal Vectors

Determine whether the two vectors, \(\displaystyle \overrightarrow{a}=\begin{bmatrix} 7\\7 \\3 \end{bmatrix}\) and \(\displaystyle \overrightarrow{b}=\begin{bmatrix}1 \\-1 \\2 \end{bmatrix}\), are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are not orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}\)

To find the dot product of two vectors given the notation

\(\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}\)

Simply multiply terms across rows:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)

For our vectors, \(\displaystyle \overrightarrow{a}=\begin{bmatrix} 7\\7 \\3 \end{bmatrix}\) and \(\displaystyle \overrightarrow{b}=\begin{bmatrix}1 \\-1 \\2 \end{bmatrix}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=7-7+6=6\)

The two vectors are not orthogonal.

Example Question #2 : Normal Vectors

Determine whether the two vectors, \(\displaystyle \overrightarrow{a}=\begin{bmatrix} 11\\8 \\-10 \end{bmatrix}\) and \(\displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\3 \\4 \end{bmatrix}\), are orthogonal or not.

Possible Answers:

The two vectors are not orthogonal.

The two vectors are orthogonal.

Correct answer:

The two vectors are not orthogonal.

Explanation:

Vectors can be said to be orthogonal, that is to say perpendicular or normal, if their dot product amounts to zero:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=0\rightarrow \overrightarrow{a}\perp\overrightarrow{b}\)

To find the dot product of two vectors given the notation

\(\displaystyle \overrightarrow{a}\begin{bmatrix} a_1\\a_2 \\ a_3 \end{bmatrix};\overrightarrow{b}\begin{bmatrix} b_1\\b_2 \\ b_3 \end{bmatrix}\)

Simply multiply terms across rows:

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)

For our vectors, \(\displaystyle \overrightarrow{a}=\begin{bmatrix} 11\\8 \\-10 \end{bmatrix}\) and \(\displaystyle \overrightarrow{b}=\begin{bmatrix} 2\\3 \\4 \end{bmatrix}\)

\(\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=22+24-40=6\)

The two vectors are not orthogonal.

Learning Tools by Varsity Tutors