Calculus 3 : Vectors and Vector Operations

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Vectors And Vector Operations

Find the distance between the vectors \(\displaystyle \left \langle 13,7,12\right \rangle\) and \(\displaystyle \left \langle 8,7,10\right \rangle\)

Possible Answers:

\(\displaystyle \sqrt{20}\)

\(\displaystyle \sqrt{29}\)

\(\displaystyle 6\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle \sqrt{29}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we use the formula

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Using the vectors from the problem statement, we get 

\(\displaystyle d=\sqrt{(13-8)^2+(7-7)^2+(12-10)^2}=\sqrt{29}\)

Example Question #72 : Vectors And Vector Operations

Find the distance between the vectors \(\displaystyle \left \langle 10,5,6\right \rangle\) and \(\displaystyle \left \langle 9,8,7\right \rangle\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle \sqrt{12}\)

\(\displaystyle \sqrt{11}\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle \sqrt{11}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we use the formula

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Using the vectors from the problem statement, we get 

\(\displaystyle d=\sqrt{(10-9)^2+(5-8)^2+(6-7)^2}=\sqrt{11}\)

Example Question #13 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 3,4,5\right \rangle\) and \(\displaystyle \left \langle 1,5,2\right \rangle\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle \sqrt{14}\)

\(\displaystyle \sqrt{15}\)

\(\displaystyle \sqrt{5}\)

Correct answer:

\(\displaystyle \sqrt{14}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we use the formula

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Using the vectors from the problem statement, we get 

\(\displaystyle d=\sqrt{(3-1)^2+(4-5)^2+(5-2)^2}=\sqrt{14}\)

Example Question #19 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 0,7,11\right \rangle\) and \(\displaystyle \left \langle -3,-2,9\right \rangle\)

Possible Answers:

\(\displaystyle \sqrt{66}\)

\(\displaystyle 9\)

\(\displaystyle \sqrt{82}\)

\(\displaystyle \sqrt{94}\)

Correct answer:

\(\displaystyle \sqrt{94}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we use the formula

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Using the vectors from the problem statement, we get 

\(\displaystyle d=\sqrt{(0+3)^2+(7+2)^2+(11-9)^2}=\sqrt{94}\)

Example Question #71 : Vectors And Vector Operations

Find the distance between the two vectors u and v:

\(\displaystyle \mathbf{u}=13\mathbf{i}+8\mathbf{j}+2\sqrt{2}\mathbf{k}\)

\(\displaystyle \mathbf{v}=9\mathbf{i}+3\mathbf{j}\)

 

Possible Answers:

\(\displaystyle 12\)

\(\displaystyle 15\)

\(\displaystyle 23\)

\(\displaystyle 7\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 7\)

Explanation:

The Euclidean distance between two vectors:

 \(\displaystyle \mathbf{u}=u_x\mathbf{i}+u_y\mathbf{j}+u_z\mathbf{k}\)   and   \(\displaystyle \mathbf{v}=v_x\mathbf{i}+v_y\mathbf{j}+v_z\mathbf{k}\)

is given by:

\(\displaystyle d=\sqrt{(u_x-v_x)^2+(u_y-v_y)^2+(u_z-v_z)^2}\)

For the given vectors, this results in the distance:

\(\displaystyle d=\sqrt{(13-9)^2+(8-3)^2+(2\sqrt{2}-0)^2}\)

\(\displaystyle d=\sqrt{4^2+5^2+(2\sqrt{2})^2}=\sqrt{16+25+8}=\sqrt{49}=7\)

Example Question #21 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 3,-6,1\right \rangle\) and \(\displaystyle \left \langle 2,5,5\right \rangle\) 

Possible Answers:

\(\displaystyle \sqrt{115}\)

\(\displaystyle \sqrt{131}\)

\(\displaystyle \sqrt{120}\)

\(\displaystyle \sqrt{138}\)

Correct answer:

\(\displaystyle \sqrt{138}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we use the following formula:

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Therefore, we get 

\(\displaystyle d=\sqrt{(3-2)^2+(-6-5)^2+(1-5)^2}=\sqrt{138}\)

 

Example Question #22 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 3,0,6\right \rangle\) and \(\displaystyle \left \langle -4,1,3\right \rangle\) 

Possible Answers:

\(\displaystyle \sqrt{58}\)

\(\displaystyle \sqrt{57}\)

\(\displaystyle \sqrt{59}\)

\(\displaystyle \sqrt{60}\)

Correct answer:

\(\displaystyle \sqrt{59}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we use the following formula:

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Therefore, we get 

\(\displaystyle d=\sqrt{(3+4)^2+(0-1)^2+(6-3)^2}=\sqrt{59}\)

Example Question #21 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 3,0,4\right \rangle\) and \(\displaystyle \left \langle 2,1,1\right \rangle\)

Possible Answers:

\(\displaystyle \sqrt{11}\)

\(\displaystyle \sqrt{10}\)

\(\displaystyle \sqrt{13}\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle \sqrt{11}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we apply the following formula:

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Using the vectors form the problem statement and applying, we get

\(\displaystyle d=\sqrt{(3-2)^2+(0-1)^2+(4-1)^2}=\sqrt{11}\)

Example Question #24 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 5,5,2\right \rangle\) and \(\displaystyle \left \langle 3,0,1\right \rangle\)

Possible Answers:

\(\displaystyle \sqrt{30}\)

\(\displaystyle \sqrt{19}\)

\(\displaystyle \sqrt{12}\)

\(\displaystyle \sqrt{18}\)

Correct answer:

\(\displaystyle \sqrt{30}\)

Explanation:

To find the distance between two vectors \(\displaystyle a=\left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle b=\left \langle x_2,y_2,z_2\right \rangle\), we apply the following formula:

\(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Using the vectors form the problem statement and applying, we get

\(\displaystyle d=\sqrt{(5-3)^2+(5-0)^2+(2-1)^2}=\sqrt{30}\)

Example Question #25 : Distance Between Vectors

Find the distance between the vectors \(\displaystyle \left \langle 2,1,1\right \rangle\) and \(\displaystyle \left \langle 3,6,5\right \rangle\)

Possible Answers:

\(\displaystyle \sqrt{45}\)

\(\displaystyle \sqrt{41}\)

\(\displaystyle \sqrt{42}\)

\(\displaystyle \sqrt{37}\)

Correct answer:

\(\displaystyle \sqrt{42}\)

Explanation:

To find the distance between two vectors \(\displaystyle \left \langle x_1,y_1,z_1\right \rangle\) and \(\displaystyle \left \langle x_2,y_2,z_2\right \rangle\), we use the formula \(\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}\)

Applying to the vectors from the problem statement, we get

\(\displaystyle d=\sqrt{(2-3)^2+(1-6)^2+(1-5)^2}=\sqrt{42}\)

Learning Tools by Varsity Tutors