Common Core: 1st Grade Math : Place Value and Properties of Operations to Add and Subtract

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #354 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 20\)

\(\displaystyle 60\)

\(\displaystyle 40\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 30\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 5-2=3\)

\(\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 20\end{array}}{ \ \ \ \space30}\)

Example Question #355 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 30\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 0\)

\(\displaystyle 40\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 30\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 3-3=0\)

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 30\end{array}}{ \ \ \ \ \ \space0}\)

Example Question #91 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 2-2=0\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 20\end{array}}{ \ \ \ \ \ \space0}\)

Example Question #801 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 50\)

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-4=2\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \ \space20}\)

Example Question #31 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 20\)

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 30\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 8-5=3\)

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \ \space30}\)

Example Question #92 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 50\)

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-4=2\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 40\end{array}}{ \ \ \ \space20}\)

Example Question #361 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 60\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 70\)

\(\displaystyle 60\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 30\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 60\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-6=3\) 

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 60\end{array}}{ \ \ \ \space30}\)

Example Question #93 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 60\)

\(\displaystyle 40\)

\(\displaystyle 50\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 60\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 8-2=6\) 

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 20\end{array}}{ \ \ \ \space60}\)

Example Question #362 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 30\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 40\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 30\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 7-3=4\) 

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 30\end{array}}{ \ \ \ \space40}\)

Example Question #361 : Number & Operations In Base Ten

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 40\)

\(\displaystyle 80\)

\(\displaystyle 50\)

\(\displaystyle 70\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 40\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-2=4\) 

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 20\end{array}}{ \ \ \ \space40}\)

Learning Tools by Varsity Tutors