Common Core: 3rd Grade Math : Common Core Math: Grade 3

Study concepts, example questions & explanations for Common Core: 3rd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #122 : Measurement And Estimation

Molly has \displaystyle 6\textup{ liters}\ (l) of  soda. If she needs \displaystyle 63\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 56\textup{ liters}

\displaystyle 58\textup{ liters}

\displaystyle 59\textup{ liters}

\displaystyle 60\textup{ liters}

\displaystyle 57\textup{ liters}

Correct answer:

\displaystyle 57\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Sarah needs to have \displaystyle 63\textup{ liters}

\displaystyle 63-6=57\textup{ liters}

Example Question #14 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Sarah has \displaystyle 32\textup{ liters}\ (l) of  soda. If she needs \displaystyle 59\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 24\textup{ liters}

\displaystyle 26\textup{ liters}

\displaystyle 28\textup{ liters}

\displaystyle 25\textup{ liters}

\displaystyle 27\textup{ liters}

Correct answer:

\displaystyle 27\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Sarah needs to have \displaystyle 59\textup{ liters}

\displaystyle 59-32=27\textup{ liters}

Example Question #121 : Measurement & Data

Megan has \displaystyle 22\textup{ liters}\ (l) of  soda. If she needs \displaystyle 49\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 30\textup { liters}

\displaystyle 22\textup { liters}

\displaystyle 20\textup { liters}

\displaystyle 27\textup { liters}

\displaystyle 29\textup { liters}

Correct answer:

\displaystyle 27\textup { liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Megan needs to have \displaystyle 49\textup{ liters}

\displaystyle 49-22=27\textup{ liters}

Example Question #12 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Mary Beth has \displaystyle 14\textup{ liters}\ (l) of  soda. If she needs \displaystyle 52\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 48\textup{ liters}

\displaystyle 33\textup{ liters}

\displaystyle 43\textup{ liters}

\displaystyle 38\textup{ liters}

\displaystyle 35\textup{ liters}

Correct answer:

\displaystyle 38\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Mary Beth needs to have \displaystyle 52\textup{ liters}

\displaystyle 52-14=38\textup{ liters}

Example Question #21 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Tracy has \displaystyle 12\textup{ liters}\ (l) of  soda. If she needs \displaystyle 40\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 28\textup{ liters}

\displaystyle 25\textup{ liters}

\displaystyle 24\textup{ liters}

\displaystyle 26\textup{ liters}

\displaystyle 27\textup{ liters}

Correct answer:

\displaystyle 28\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Tracy needs to have \displaystyle 40\textup{ liters}

\displaystyle 40-12=28\textup{ liters}

Example Question #22 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Molly has \displaystyle 25\textup{ liters}\ (l) of  soda. If she needs \displaystyle 75\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 46\textup{ liters}

\displaystyle 49\textup{ liters}

\displaystyle 48\textup{ liters}

\displaystyle 50\textup{ liters}

\displaystyle 47\textup{ liters}

Correct answer:

\displaystyle 50\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Molly needs to have \displaystyle 75\textup{ liters}

\displaystyle 75-25=50\textup{ liters}

Example Question #23 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Hannah has \displaystyle 26\textup{ liters}\ (l) of  soda. If she needs \displaystyle 64\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 39\textup{ liters}

\displaystyle 37\textup{ liters}

\displaystyle 41\textup{ liters}

\displaystyle 40\textup{ liters}

\displaystyle 38\textup{ liters}

Correct answer:

\displaystyle 38\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Hannah needs to have \displaystyle 64\textup{ liters}

\displaystyle 64-26=38\textup{ liters}

Example Question #131 : Measurement & Data

Melissa has \displaystyle 29\textup{ liters}\ (l) of  soda. If she needs \displaystyle 61\textup{ liters}. How much more soda does she need? 

 

Possible Answers:

\displaystyle 30\textup{ liters}

\displaystyle 27\textup{ liters}

\displaystyle 28\textup{ liters}

\displaystyle 32\textup{ liters}

\displaystyle 23\textup{ liters}

Correct answer:

\displaystyle 32\textup{ liters}

Explanation:

The phrase "how much more" tell us that we need to subtract to find out how much more soda Melissa needs to have \displaystyle 61\textup{ liters}

\displaystyle 61-29=32\textup{ liters}

Example Question #1491 : Common Core Math: Grade 3

The TV weighs \displaystyle 5\textup{ kilograms}\(kg) and the TV stand weighs \displaystyle 7\textup{ kilograms}\(kg). How much do they both weigh together? 

Possible Answers:

\displaystyle 15kg

\displaystyle 14kg

\displaystyle 16kg

\displaystyle 12kg

\displaystyle 13kg

Correct answer:

\displaystyle 12kg

Explanation:

When we are putting things together, we add. 

\displaystyle 5+7=12kg

Example Question #1492 : Common Core Math: Grade 3

The table weighs \displaystyle 7\textup{ kilograms}\(kg) and the chair weighs \displaystyle 3\textup{ kilograms}\(kg). How much do they both weigh together? 

 

Possible Answers:

\displaystyle 8kg

\displaystyle 10kg

\displaystyle 7kg

\displaystyle 9kg

\displaystyle 6kg

Correct answer:

\displaystyle 10kg

Explanation:

When we are putting things together, we add. 

\displaystyle 7+3=10kg

Learning Tools by Varsity Tutors