Common Core: 3rd Grade Math : Measurement & Data

Study concepts, example questions & explanations for Common Core: 3rd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Measurement & Data

When Aubtin got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 1\) hour and \(\displaystyle 45\) minutes. If it is \(\displaystyle 5:56\) when he stops watching the show, what time did he start watching the show? 

 

Possible Answers:

\(\displaystyle 4:23\)

\(\displaystyle 3:19\)

\(\displaystyle 5:11\)

\(\displaystyle 3:42\)

\(\displaystyle 4:11\)

Correct answer:

\(\displaystyle 4:11\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 1\) hour from \(\displaystyle 5\) and \(\displaystyle 45\) minutes from \(\displaystyle 56\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 1\end{array}}{ \ \ \ \space4}\)   \(\displaystyle \frac{\begin{array}[b]{r}56\\ -\ 45\end{array}}{ \ \ \ \space 11}\)

He started watching the television show at \(\displaystyle 4:11\)

Example Question #41 : Measurement & Data

When Armen got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 1\) hour and \(\displaystyle 17\) minutes. If it is \(\displaystyle 5:42\) when he stops watching the show, what time did he start watching the show? 

 

Possible Answers:

\(\displaystyle 5:00\)

\(\displaystyle 3:47\)

\(\displaystyle 5:23\)

\(\displaystyle 3:23\)

\(\displaystyle 4:25\)

Correct answer:

\(\displaystyle 4:25\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 1\) hour from \(\displaystyle 5\) and \(\displaystyle 17\) minutes from \(\displaystyle 42\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 1\end{array}}{ \ \ \ \space4}\)   \(\displaystyle \frac{\begin{array}[b]{r}42\\ -\ 17\end{array}}{ \ \ \ \space 25}\)

He started watching the television show at \(\displaystyle 4:25\)

Example Question #41 : Tell And Write Time To The Nearest Minute And Solve Word Problems Involving Time: Ccss.Math.Content.3.Md.A.1

When Joe got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 2\) hours and \(\displaystyle 20\) minutes. If it is \(\displaystyle 8:30\) when he stops watching the show, what time did he start watching the show? 

 

Possible Answers:

\(\displaystyle 10:20\)

\(\displaystyle 10:10\)

\(\displaystyle 7:20\)

\(\displaystyle 6:10\)

\(\displaystyle 6:15\)

Correct answer:

\(\displaystyle 6:10\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 2\) hours from \(\displaystyle 8\) and \(\displaystyle 20\) minutes from \(\displaystyle 30\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 2\end{array}}{ \ \ \ \space6}\)   \(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \ \space 10}\)

He started watching the television show at \(\displaystyle 6:10\)

Example Question #41 : Measurement & Data

When Greg got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 2\) hours and \(\displaystyle 14\) minutes. If it is \(\displaystyle 8:17\) when he stops watching the show, what time did he start watching the show? 

 

Possible Answers:

\(\displaystyle 6:05\)

\(\displaystyle 7:13\)

\(\displaystyle 6:03\)

\(\displaystyle 10:03\)

\(\displaystyle 10:05\)

Correct answer:

\(\displaystyle 6:03\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 2\) hours from \(\displaystyle 8\) and \(\displaystyle 14\) minutes from \(\displaystyle 17\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 2\end{array}}{ \ \ \ \space6}\)   \(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 14\end{array}}{ \ \ \ \space 3}\)

He started watching the television show at \(\displaystyle 6:03\)

Example Question #41 : Measurement & Data

When Eric got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 2\) hours and \(\displaystyle 37\) minutes. If it is \(\displaystyle 8:53\) when he stops watching the show, what time did he start watching the show? 

 

Possible Answers:

\(\displaystyle 10:34\)

\(\displaystyle 10:19\)

\(\displaystyle 7:19\)

\(\displaystyle 7:34\)

\(\displaystyle 6:16\)

Correct answer:

\(\displaystyle 6:16\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 2\) hours from \(\displaystyle 8\) and \(\displaystyle 37\) minutes from \(\displaystyle 53\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 2\end{array}}{ \ \ \ \space6}\)   \(\displaystyle \frac{\begin{array}[b]{r}53\\ -\ 37\end{array}}{ \ \ \ \space 16}\)

He started watching the television show at \(\displaystyle 6:16\)

Example Question #41 : Measurement And Estimation

When David got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 2\) hours and \(\displaystyle 19\) minutes. If it is \(\displaystyle 8:45\) when he stops watching the show, what time did he start watching the show? 

 

 

 

Possible Answers:

\(\displaystyle 6:45\)

\(\displaystyle 4:23\)

\(\displaystyle 6:26\)

\(\displaystyle 4:45\)

\(\displaystyle 5:23\)

Correct answer:

\(\displaystyle 6:26\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 2\) hours from \(\displaystyle 8\) and \(\displaystyle 19\) minutes from \(\displaystyle 45\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 2\end{array}}{ \ \ \ \space6}\)   \(\displaystyle \frac{\begin{array}[b]{r}45\\ -\ 19\end{array}}{ \ \ \ \space 26}\)

He started watching the television show at \(\displaystyle 6:26\)

Example Question #41 : Measurement & Data

When Mitch got home from school he immediately started watching a television show. He watched the show for \(\displaystyle 2\) hours and \(\displaystyle 39\) minutes. If it is \(\displaystyle 8:48\) when he stops watching the show, what time did he start watching the show? 

 

 

 

Possible Answers:

\(\displaystyle 5:09\)

\(\displaystyle 6:14\)

\(\displaystyle 5:34\)

\(\displaystyle 5:14\)

\(\displaystyle 6:09\)

Correct answer:

\(\displaystyle 6:09\)

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \(\displaystyle 2\) hours from \(\displaystyle 8\) and \(\displaystyle 39\) minutes from \(\displaystyle 48\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 2\end{array}}{ \ \ \ \space6}\)   \(\displaystyle \frac{\begin{array}[b]{r}48\\ -\ 39\end{array}}{ \ \ \ \space 9}\)

He started watching the television show at \(\displaystyle 6:09\)

Example Question #42 : Measurement And Estimation

Megan left for the carnival at \(\displaystyle 4:18\). She returned home \(\displaystyle 3\) hours and \(\displaystyle 26\) minutes later. What time was it when she returned home?

Possible Answers:

\(\displaystyle 6:34\)

\(\displaystyle 7:44\)

\(\displaystyle 1:26\)

\(\displaystyle 7:26\)

\(\displaystyle 1:44\)

Correct answer:

\(\displaystyle 7:44\)

Explanation:

For this problem we are adding to find a future time.  

We can add \(\displaystyle 3\) hour to \(\displaystyle 4\) and \(\displaystyle 26\) minutes to \(\displaystyle 18\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ +\ 3\end{array}}{ \ \ \ \space7}\)   \(\displaystyle \frac{\begin{array}[b]{r}18\\ +\ 26\end{array}}{ \ \ \ \space 44}\)

She returned home at \(\displaystyle 7:44\)

Example Question #43 : Measurement And Estimation

Elizabeth left for the carnival at \(\displaystyle 4:05\). She returned home \(\displaystyle 3\) hours and \(\displaystyle 30\) minutes later. What time was it when she returned home?

 

 

Possible Answers:

\(\displaystyle 8:25\)

\(\displaystyle 7:30\)

\(\displaystyle 7:45\)

\(\displaystyle 7:35\)

\(\displaystyle 8:20\)

Correct answer:

\(\displaystyle 7:35\)

Explanation:

For this problem we are adding to find a future time.  

We can add \(\displaystyle 3\) hour to \(\displaystyle 4\) and \(\displaystyle 30\) minutes to \(\displaystyle 5\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ +\ 3\end{array}}{ \ \ \ \space7}\)   \(\displaystyle \frac{\begin{array}[b]{r}5\\ +\ 30\end{array}}{ \ \ \ \space 35}\)

She returned home at \(\displaystyle 7:35\)

Example Question #43 : Measurement & Data

Sarah left for the carnival at \(\displaystyle 4:10\). She returned home \(\displaystyle 3\) hours and \(\displaystyle 19\) minutes later. What time was it when she returned home?

 

 

 

Possible Answers:

\(\displaystyle 7:46\)

\(\displaystyle 8:11\)

\(\displaystyle 7:29\)

\(\displaystyle 6:27\)

\(\displaystyle 6:43\)

Correct answer:

\(\displaystyle 7:29\)

Explanation:

For this problem we are adding to find a future time.  

We can add \(\displaystyle 3\) hour to \(\displaystyle 4\) and \(\displaystyle 19\) minutes to \(\displaystyle 10\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ +\ 3\end{array}}{ \ \ \ \space7}\)   \(\displaystyle \frac{\begin{array}[b]{r}10\\ +\ 19\end{array}}{ \ \ \ \space 29}\)

She returned home at \(\displaystyle 7:29\)

Learning Tools by Varsity Tutors