Common Core: 4th Grade Math : Common Core Math: Grade 4

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #92 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What point on the number line is at \(\displaystyle 2.91?\)

Decimal number line 8

 

Possible Answers:

\(\displaystyle T\)

\(\displaystyle X\)

\(\displaystyle R\)

\(\displaystyle V\)

\(\displaystyle W\)

Correct answer:

\(\displaystyle R\)

Explanation:

\(\displaystyle 2.91\) will be between \(\displaystyle 2.9\) and \(\displaystyle 3\). Point \(\displaystyle R\) is the only dot between those two numbers. 

Example Question #121 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What point on the number line is at \(\displaystyle 3.11?\)

Decimal number line 8

 

Possible Answers:

\(\displaystyle N\)

\(\displaystyle Q\)

\(\displaystyle P\)

\(\displaystyle S\)

\(\displaystyle O\)

Correct answer:

\(\displaystyle S\)

Explanation:

\(\displaystyle 3.11\) will be between \(\displaystyle 3.1\) and \(\displaystyle 3.2\). Point \(\displaystyle S\) is the only dot between those two numbers. 

Example Question #122 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What point on the number line is at \(\displaystyle 3.26?\)

Decimal number line 8

 

 

Possible Answers:

\(\displaystyle W\)

\(\displaystyle T\)

\(\displaystyle V\)

\(\displaystyle S\)

\(\displaystyle U\)

Correct answer:

\(\displaystyle T\)

Explanation:

\(\displaystyle 3.26\) will be between \(\displaystyle 3.2\) and \(\displaystyle 3.3\). Point \(\displaystyle T\) is the only dot between those two numbers. 

Example Question #93 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What point on the number line is at \(\displaystyle 3.4?\)

Decimal number line 8

 

Possible Answers:

\(\displaystyle U\)

\(\displaystyle R\)

\(\displaystyle Q\)

\(\displaystyle O\)

\(\displaystyle P\)

Correct answer:

\(\displaystyle U\)

Explanation:

\(\displaystyle 3.4\) is a number on the number line. Point \(\displaystyle U\) is on \(\displaystyle 3.4\)

Example Question #121 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What point on the number line is at \(\displaystyle 3.52?\)

Decimal number line 8

 

Possible Answers:

\(\displaystyle V\)

\(\displaystyle Q\)

\(\displaystyle W\)

\(\displaystyle P\)

\(\displaystyle X\)

Correct answer:

\(\displaystyle V\)

Explanation:

\(\displaystyle 3.52\) will be between \(\displaystyle 3.5\) and \(\displaystyle 3.6\). Point \(\displaystyle V\) is the only dot between those two numbers. 

Example Question #101 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What point on the number line is at \(\displaystyle 3.67?\)

Decimal number line 8

 

Possible Answers:

\(\displaystyle X\)

\(\displaystyle W\)

\(\displaystyle V\)

\(\displaystyle Q\)

\(\displaystyle U\)

Correct answer:

\(\displaystyle W\)

Explanation:

\(\displaystyle 3.67\) will be between \(\displaystyle 3.6\) and \(\displaystyle 3.7\). Point \(\displaystyle W\) is the only dot between those two numbers. 

Example Question #102 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What point on the number line is at \(\displaystyle 3.83?\)

Decimal number line 8

 

Possible Answers:

\(\displaystyle O\)

\(\displaystyle X\)

\(\displaystyle Q\)

\(\displaystyle N\)

\(\displaystyle P\)

Correct answer:

\(\displaystyle X\)

Explanation:

\(\displaystyle 3.83\) will be between \(\displaystyle 3.8\) and \(\displaystyle 3.9\). Point \(\displaystyle X\) is the only dot between those two numbers. 

Example Question #851 : Common Core Math: Grade 4

What decimal is equivalent to \(\displaystyle \frac{62}{100}?\)

Possible Answers:

\(\displaystyle .062\)

\(\displaystyle .62\)

\(\displaystyle 60.2\)

\(\displaystyle 6.2\)

\(\displaystyle 62.0\)

Correct answer:

\(\displaystyle .62\)

Explanation:

\(\displaystyle \frac{62}{100}\) is sixty-two hundredths. 

\(\displaystyle .62\) is sixty-two hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #852 : Fractions

What decimal is equivalent to \(\displaystyle \frac{28}{100}?\)

 

Possible Answers:

\(\displaystyle .28\)

\(\displaystyle 2.8\)

\(\displaystyle .028\)

\(\displaystyle 20.8\)

\(\displaystyle 28.0\)

Correct answer:

\(\displaystyle .28\)

Explanation:

\(\displaystyle \frac{28}{100}\) is twenty-eight hundredths. 

\(\displaystyle .28\) is twenty-eight hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #852 : Common Core Math: Grade 4

What decimal is equivalent to \(\displaystyle \frac{33}{100}?\)

 

Possible Answers:

\(\displaystyle 30.3\)

\(\displaystyle 3.30\)

\(\displaystyle 33.0\)

\(\displaystyle 3.3\)

\(\displaystyle .33\)

Correct answer:

\(\displaystyle .33\)

Explanation:

\(\displaystyle \frac{33}{100}\) is thirty-three hundredths. 

\(\displaystyle .33\) is thirty-three hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Learning Tools by Varsity Tutors