Common Core: 4th Grade Math : Express a Fraction With Denominator 10 as an Equivalent Fraction With Denominator 100: CCSS.Math.Content.4.NF.C.5

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{1}{10}=\frac{?}{100}\)

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 2\)

\(\displaystyle 10\)

\(\displaystyle 5\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 10\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 1\times10=10\)

\(\displaystyle \frac{1}{10}=\frac{10}{100}\)

Example Question #2 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

\(\displaystyle \frac{4}{10}=\frac{?}{100}\)

Possible Answers:

\(\displaystyle 45\)

\(\displaystyle 25\)

\(\displaystyle 15\)

\(\displaystyle 20\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 40\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 4\times10=40\)

\(\displaystyle \frac{4}{10}=\frac{40}{100}\)

Example Question #731 : Common Core Math: Grade 4

\(\displaystyle \frac{3}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 35\)

\(\displaystyle 55\)

\(\displaystyle 40\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 30\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 3\times10=30\)

\(\displaystyle \frac{3}{10}=\frac{30}{100}\)

Example Question #1 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{2}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 12\)

\(\displaystyle 5\)

\(\displaystyle 20\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 20\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 2\times10=20\)

\(\displaystyle \frac{2}{10}=\frac{20}{100}\)

Example Question #2 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{5}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 25\)

\(\displaystyle 50\)

\(\displaystyle 75\)

\(\displaystyle 15\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 50\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 5\times10=50\)

\(\displaystyle \frac{5}{10}=\frac{50}{100}\)

Example Question #3 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{6}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 26\)

\(\displaystyle 50\)

\(\displaystyle 40\)

\(\displaystyle 60\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 60\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 6\times10=60\)

\(\displaystyle \frac{6}{10}=\frac{60}{100}\)

Example Question #6 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{7}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 75\)

\(\displaystyle 90\)

\(\displaystyle 85\)

\(\displaystyle 80\)

\(\displaystyle 70\)

Correct answer:

\(\displaystyle 70\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 7\times10=70\)

\(\displaystyle \frac{7}{10}=\frac{70}{100}\)

Example Question #4 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{8}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 80\)

\(\displaystyle 95\)

\(\displaystyle 38\)

\(\displaystyle 85\)

Correct answer:

\(\displaystyle 80\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 8\times10=80\)

\(\displaystyle \frac{8}{10}=\frac{80}{100}\)

Example Question #1 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

\(\displaystyle \frac{9}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 95\)

\(\displaystyle 39\)

\(\displaystyle 90\)

\(\displaystyle 19\)

\(\displaystyle 99\)

Correct answer:

\(\displaystyle 90\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 9\times10=90\)

\(\displaystyle \frac{9}{10}=\frac{90}{100}\)

Example Question #9 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{10}{10}=\frac{?}{100}\)

 

Possible Answers:

\(\displaystyle 45\)

\(\displaystyle 90\)

\(\displaystyle 95\)

\(\displaystyle 100\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 100\)

Explanation:

To find equivalent fractions, we must always multiply the denominator and the numerator by the same number. 

\(\displaystyle 100\div10=10\), so we need to multiply the numerator by \(\displaystyle 10\).

\(\displaystyle 10\times10=100\)

\(\displaystyle \frac{10}{10}=\frac{100}{100}\)

Learning Tools by Varsity Tutors