Common Core: 4th Grade Math : Measurement & Data

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 10.26.58 am

 

Possible Answers:

\(\displaystyle 390\)

\(\displaystyle 320\)

\(\displaystyle 340\)

\(\displaystyle 380\)

\(\displaystyle 300\)

Correct answer:

\(\displaystyle 300\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1min}{60 sec}=\frac{5min}{x}\)

First we cross multiply. 

\(\displaystyle 1min(x)=5min(60sec)\) 

Then we divide each side by \(\displaystyle 1min\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1min(x)}{1min}=\frac{5min(60sec)}{1min}\)

\(\displaystyle x=300 sec\)

Example Question #12 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 10.27.13 am

Possible Answers:

\(\displaystyle 240\)

\(\displaystyle 250\)

\(\displaystyle 280\)

\(\displaystyle 270\)

\(\displaystyle 260\)

Correct answer:

\(\displaystyle 240\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1min}{60 sec}=\frac{4min}{x}\)

First we cross multiply. 

\(\displaystyle 1min(x)=4min(60sec)\) 

Then we divide each side by \(\displaystyle 1min\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1min(x)}{1min}=\frac{4min(60sec)}{1min}\)

\(\displaystyle x=240 sec\)

Example Question #2982 : Numbers And Operations

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 10.27.21 am

Possible Answers:

\(\displaystyle 160\)

\(\displaystyle 180\)

\(\displaystyle 190\)

\(\displaystyle 170\)

\(\displaystyle 150\)

Correct answer:

\(\displaystyle 180\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1min}{60 sec}=\frac{3min}{x}\)

First we cross multiply. 

\(\displaystyle 1min(x)=3min(60sec)\) 

Then we divide each side by \(\displaystyle 1min\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1min(x)}{1min}=\frac{3min(60sec)}{1min}\)

\(\displaystyle x=180 sec\)

Example Question #2983 : Numbers And Operations

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 10.27.31 am

Possible Answers:

\(\displaystyle 110\)

\(\displaystyle 115\)

\(\displaystyle 100\)

\(\displaystyle 120\)

\(\displaystyle 80\)

Correct answer:

\(\displaystyle 120\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1min}{60 sec}=\frac{2min}{x}\)

First we cross multiply. 

\(\displaystyle 1min(x)=2min(60sec)\) 

Then we divide each side by \(\displaystyle 1min\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1min(x)}{1min}=\frac{2min(60sec)}{1min}\)

\(\displaystyle x=120 sec\)

Example Question #2765 : Operations

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 11.49.49 am

Possible Answers:

\(\displaystyle 700\)

\(\displaystyle 7,00\)

\(\displaystyle 7,0000\)

\(\displaystyle 7,000\)

\(\displaystyle 70,000\)

Correct answer:

\(\displaystyle 7,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1kg}{1,000 g}=\frac{7kg}{x}\)

First we cross multiply. 

\(\displaystyle 1kg(x)=7kg(1,000g)\) 

Then we divide each side by \(\displaystyle 1kg\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1kg(x)}{1kg}=\frac{7kg(1,000g)}{1kg}\)

\(\displaystyle x=7,000g\)

Example Question #303 : How To Multiply

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 11.50.00 am

Possible Answers:

\(\displaystyle 60,000\)

\(\displaystyle 6,0000\)

\(\displaystyle 6,000\)

\(\displaystyle 60\)

\(\displaystyle 600\)

Correct answer:

\(\displaystyle 6,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1kg}{1,000 g}=\frac{6kg}{x}\)

First we cross multiply. 

\(\displaystyle 1kg(x)=6kg(1,000g)\) 

Then we divide each side by \(\displaystyle 1kg\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1kg(x)}{1kg}=\frac{6kg(1,000g)}{1kg}\)

\(\displaystyle x=6,000g\)

Example Question #2771 : Operations

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 11.50.10 am

Possible Answers:

\(\displaystyle 500\)

\(\displaystyle 50,000\)

\(\displaystyle 5,0000\)

\(\displaystyle 50\)

\(\displaystyle 5,000\)

Correct answer:

\(\displaystyle 5,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1kg}{1,000 g}=\frac{5kg}{x}\)

First we cross multiply. 

\(\displaystyle 1kg(x)=5kg(1,000g)\) 

Then we divide each side by \(\displaystyle 1kg\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1kg(x)}{1kg}=\frac{5kg(1,000g)}{1kg}\)

\(\displaystyle x=5,000g\)

Example Question #11 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 11.50.20 am

Possible Answers:

\(\displaystyle 4,000\)

\(\displaystyle 4,00\)

\(\displaystyle 40,000\)

\(\displaystyle 400\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 4,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1kg}{1,000 g}=\frac{4kg}{x}\)

First we cross multiply. 

\(\displaystyle 1kg(x)=4kg(1,000g)\) 

Then we divide each side by \(\displaystyle 1kg\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1kg(x)}{1kg}=\frac{4kg(1,000g)}{1kg}\)

\(\displaystyle x=4,000g\)

Example Question #2772 : Operations

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 11.50.39 am

Possible Answers:

\(\displaystyle 30,000\)

\(\displaystyle 30\)

\(\displaystyle 3,000\)

\(\displaystyle 3,00\)

\(\displaystyle 300\)

Correct answer:

\(\displaystyle 3,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1kg}{1,000 g}=\frac{3kg}{x}\)

First we cross multiply. 

\(\displaystyle 1kg(x)=3kg(1,000g)\) 

Then we divide each side by \(\displaystyle 1kg\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1kg(x)}{1kg}=\frac{3kg(1,000g)}{1kg}\)

\(\displaystyle x=3,000g\)

Example Question #2772 : Operations

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 11.50.55 am

Possible Answers:

\(\displaystyle 200\)

\(\displaystyle 2,00\)

\(\displaystyle 20,000\)

\(\displaystyle 20\)

\(\displaystyle 2,000\)

Correct answer:

\(\displaystyle 2,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1kg}{1,000 g}=\frac{2kg}{x}\)

First we cross multiply. 

\(\displaystyle 1kg(x)=2kg(1,000g)\) 

Then we divide each side by \(\displaystyle 1kg\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1kg(x)}{1kg}=\frac{2kg(1,000g)}{1kg}\)

\(\displaystyle x=2,000g\)

Learning Tools by Varsity Tutors